
RESEARCH ARTICLE

Early-life effects of juvenile Western diet and exercise on adult gut
microbiome composition in mice
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ABSTRACT
Alterations to the gut microbiome caused by changes in diet,
consumption of antibiotics, etc., can affect host function. Moreover,
perturbation of the microbiome during critical developmental periods
potentially has long-lasting impacts on hosts. Using four selectively
bred high runner and four non-selected control lines of mice, we
examined the effects of early-life diet and exercise manipulations on
the adult microbiome by sequencing the hypervariable internal
transcribed spacer region of the bacterial gut community. Mice from
high runner lines run ∼3-fold more on wheels than do controls, and
have several other phenotypic differences (e.g. higher food
consumption and body temperature) that could alter the
microbiome, either acutely or in terms of coevolution. Males from
generation 76 were given wheels and/or a Western diet from weaning
until sexual maturity at 6 weeks of age, then housed individually
without wheels on standard diet until 14 weeks of age, when fecal
samples were taken. Juvenile Western diet reduced bacterial
richness and diversity after the 8-week washout period (equivalent
to ∼6 human years). We also found interactive effects of genetic line
type, juvenile diet and/or juvenile exercise on microbiome
composition and diversity. Microbial community structure clustered
significantly in relation to both line type and diet. Western diet also
reduced the relative abundance of Muribaculum intestinale. These
results constitute one of the first reports of juvenile diet having long-
lasting effects on the adult microbiome after a substantial washout
period. Moreover, we found interactive effects of diet with early-life
exercise exposure, and a dependence of these effects on genetic
background.
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INTRODUCTION
Animals have evolved in a bacterial world. Coevolution between
hosts and symbionts has resulted in complex relationships, wherein
the diverse community of species inhabiting the gastrointestinal
tract in mammals is essential for breaking down nutrients from
ingested food, normal metabolic function and protection through
enhanced immunity (Dominguez-Bello et al., 2019; Gilbert et al.,
2018; Kohl and Carey, 2016). Many factors have been shown to
influence the gut microbial community and diversity, including diet,

exercise, antibiotics and age (Bokulich et al., 2016; Clark andMach,
2016; Lozupone et al., 2012; Yatsunenko et al., 2012). Alterations
to the community can result in potentially irreversible (Dethlefsen
and Relman, 2011; Langdon et al., 2016) changes in the
microbiome. Compositional changes in the gut microbiome can,
in turn, affect many aspects of host biology, including physiology
and behavior.

Diet can rapidly alter the gut microbiome community in as short
as 24 h (David et al., 2014). For example, many laboratory studies of
adult rodents have shown that a typical Western diet (high in fat and
sugar) alters the gut microbiome community and reduces diversity
of bacterial species (Becker et al., 2020; Beilharz et al., 2017;
Leamy et al., 2014; Pindjakova et al., 2017; Turnbaugh et al., 2008).
In multiple strains of inbred, outbred and transgenic mice, a shift in
diet can have lasting effects on the community, as repetitive
switching from a high-fat, high-sugar diet to a low-fat diet results in
altered community membership and composition that does not
revert to the original state (Carmody et al., 2015). Rodent studies
also indicate that diet can alter microbial function. For example,
adult mice fed a high-fat diet for 12 weeks had unique gut
microbiome communities, increased body mass, and altered gut
bacterial function as measured by metaproteome and metabolome
analyses (Daniel et al., 2014). In that study, high-fat diet led to an
increase in amino acid metabolism and enzymes involved in the
oxidative stress response, possibly in response to the shift in nutrient
availability within the gut.

Acute and chronic exercise can also affect the microbiome (Clark
and Mach, 2016; Codella et al., 2018; Mach and Fuster-Botella,
2017; Mailing et al., 2019; O’Sullivan et al., 2015; Scheiman et al.,
2019). The first paper highlighting the relationship between exercise
and the microbiome found that adult rats with wheel access for
5 weeks had an increased amount of cecal n-butyrate, a short-chain
fatty acid byproduct of bacterial fermentation (Matsumoto et al.,
2008). Butyrate can be transported from the small intestine to
muscles, where it can lead to activation of several regulatory
pathways linked to ATP production as well as muscle integrity, thus
potentially altering athletic ability and/or performance (Ticinesi
et al., 2017; Walsh et al., 2015). Approaches for measuring the
effect of exercise on the gut microbiome vary widely in the
literature, but consistent trends in results are emerging. For example,
both rodent and human studies have reported increased butyrate-
producing bacteria (Barton et al., 2018; Matsumoto et al., 2008),
and also increases in taxa such as Lactobacillus (Batacan et al.,
2017; Lambert et al., 2014; Petriz et al., 2014; Queipo-Ortuño et al.,
2013), Bifidobacterium (Bressa et al., 2017; Lambert et al., 2014;
Queipo-Ortuño et al., 2013) and Akkermansia (Barton et al., 2018;
Bressa et al., 2017; Clarke et al., 2014; Liu et al., 2015). In amateur
half-marathon runners, the relative abundances of several bacterial
taxa and fecal metabolites were significantly different pre- and post-
race (Zhao et al., 2018).Received 27 October 2020; Accepted 6 January 2021
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Diet and exercise have also been shown to interactively influence
the gut microbiome community and diversity in rodents (Batacan
et al., 2017; Denou et al., 2016; Evans et al., 2014). Mice placed on
a high-fat diet for 6 weeks followed by 6 weeks of high-intensity
interval training had greater bacterial diversity in the feces
compared with sedentary mice on standard chow (Denou et al.,
2016). Exercise-trained mice on a high-fat diet had significant
changes in the relative abundance of the phylum Bacteroidetes in
the small intestine, cecum and colon compared with mice on a high-
fat diet without exercise training. In another study on the interactions
between exercise and diet, mice given 12 weeks of voluntary wheel
access on a standard or high-fat diet had higher diversity than
sedentary controls as well as significant main effects of diet,
exercise and their interactions on taxa relative abundance (Evans
et al., 2014). More specifically, that study found an increase in the
relative abundance of butyrate-producing taxa in the Clostridiales
order compared with sedentary mice. In rats, high-intensity and
light-intensity interval training regimens resulted in unique
microbiome communities regardless of whether they were on a
high-fat, high-fructose diet or a standard diet (Batacan et al., 2017).
The scarcity of studies examining diet–exercise interactions
highlights the need for more research in this growing field.
In mammals, the period of development from weaning to sexual

maturity is a crucial time during which environmental conditions
can have a lasting impact on many traits (Garland et al., 2017),
including normal development of the microbiome (Kerr et al.,
2015). Immediately after birth, initial colonizers of the gut
microbiome in placental mammals are dominated by microbes
from the mother, followed by further acquisitions from the early-life
environment (Funkhouser and Bordenstein, 2013; Milani et al.,
2017). A clear example of developmental effects on the gut
microbiome is early-life diet: babies that are breastfed have a unique
microbiome compared with those fed formula (Sprockett et al.,
2018), and have higher bacterial diversity during the first 12–
24 months of age (Bokulich et al., 2016). In mice, early-life
antibiotic treatment followed by placement on a high-fat, high-sugar
diet as adults results in increased adult adiposity and an increase in
the ratio of Firmicutes to Bacteroidetes as compared with mice on a
normal diet (Schulfer et al., 2019). In a recent study, juvenile mice
given 3 weeks of high-fat diet or cafeteria diet starting at 4 weeks of
age followed by an approximately 7-week-long washout period had
altered adult gut microbiome communities (Fülling et al., 2020).
More specifically, mice with a juvenile high-fat diet had reduced
diversity of the adult gut microbiome at approximately 14 weeks of
age. However, only one study has tested whether early-life effects of
exercise on the microbiome can persist after a substantial washout
period. Mika et al. (2015) found that after a 25-day washout period,
rats with 6 weeks of juvenile wheel access tended to have decreased
Firmicutes abundance as adults.
The first goal of the present study was to test for long-lasting

effects of early-life Western diet and exercise on the adult
microbiome. To do so, we used a unique animal model: four lines
of high runner (HR) mice that have been selectively bred for high
voluntary wheel-running behavior and their four non-selected
control (C) lines (Swallow et al., 1998). The HR mice differ from C
mice in several ways that might affect the microbiome through
alterations in the gut environment. HR mice have higher activity
levels and food consumption even when housed without wheels,
and increased body temperature when active (Copes et al., 2015;
Malisch et al., 2009; Swallow et al., 2009; Wallace and Garland,
2016), all of which might affect the gut environment. In the absence
of compensatory reductions in other aspects of physical activity,

exercise leads to increased energy expenditure and hence
necessitates greater food consumption (Garland et al., 2011),
which should directly impact the gut microbiome. Exercise also
causes many acute changes in physiology, including increases in
body temperature, and changes in hormone levels, intestinal barrier
function and digestive transit time that could feedback into the gut
environment (Campbell and Wisniewski, 2017; Mach and Fuster-
Botella, 2017). HR and C mice also differ in circulating
concentrations of hormones (Garland et al., 2016). When housed
without wheels, HR and C mice do not differ in small or large
intestine mass or length, suggesting that the former might have
faster digestive throughput (Kelly et al., 2017). Therefore, our
second goal was to test for microbiome differences between the HR
and C lines, which could result from acute effects of the noted
phenotypic differences. Another possibility is coevolution of the gut
microbiome across many tens of generations of selective breeding,
but we cannot differentiate that from acute/chronic effects of
exercise with the present experimental design. Our analyses also
considered the possibility of interactive effects, e.g. that genetic
background (Benson et al., 2010; Carmody et al., 2015; Leamy
et al., 2014) might influence whether and how early-life Western
diet or exercise opportunity affects the adult microbiome.

MATERIALS AND METHODS
All experiments and methods were approved by the Institutional
Animal Use and Care Committee of the University of California,
Riverside.

Experimental animals
Mice were sampled from generation 76 of an ongoing selection
experiment selecting for high voluntary wheel-running behavior.
Four replicate HR lines were bred for high levels of voluntary wheel
running and were compared with four non-selected C lines. The
base population was 224 outbred Hsd:ICR laboratory house mice
(Swallow et al., 1998). Mice were weaned at 21 days of age and
housed four per cage separated by line and sex until ∼6–8 weeks of
age. Mice were then placed into individual cages attached to a
1.12 m circumference wheel (Lafayette Instruments, Lafayette, IN,
USA) with a sensor to record the total number of revolutions per day
(e.g. see Swallow et al., 1998). For HR mice, the highest running
male and female from each family based on the average revolutions
on days 5 and 6 of a 6-day period of wheel access were chosen as
breeders for the next generation. Breeders in the C lines were chosen
without regard to how much they run. Each generation had ∼10
breeding pairs per line, and sibling pairings were not allowed.

Early-life diet and exercise treatment
A total of 165 male mice, sampled approximately equally from the
four replicate HR and four non-selected C lines, were weaned at
21 days of age and placed into one of four treatment groups for
3 weeks: (1) standard diet, nowheels; (2)Western diet, nowheels; (3)
standard diet, wheels; and (4) Western diet, wheels (see Fig. 1). Mice
were provided with ad libitum food and water for the duration of the
experiment. Standard Laboratory Rodent Diet (SD) from Harlan
Teklad (W-8604) contained 4% kJ from fat and the Western diet
(WD) from Harland Teklad (TD.88137) contained 42% kJ from fat.
After the 3 weeks of juvenile exposure, which allowed them to reach
sexual maturity, all mice were housed individually without wheel
access on standard diet for an 8-week washout period (equivalent to
approximately 6 human years: Dutta and Sengupta, 2016).Micewere
maintained in roomswith lights on at 07:00 Pacific Standard Time for
a 12 h:12 h light:dark photoperiod, and at approximately 22°C.

2

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb239699. doi:10.1242/jeb.239699

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



Juvenile wheel running
Juvenile wheel running was measured during weeks 3–6 of the
early-life diet and/or exercise manipulation. Mice were housed
individually in home cages with attached wheels, as used during the
routine selective breeding protocol (Swallow et al., 1998). Sensors
attached to thewheel record the number of revolutions in each 1-min
interval during a 23 h measurement period. We measured wheel
freeness by recording the number of revolutions per wheel until it
reached a stop after accelerating each wheel to a constant speed
(Copes et al., 2015).

Juvenile food consumption
Juvenile food consumption was measured during weeks 3–6 of the
early-life diet and/or exercise manipulation. Food hoppers were
weighed at the start and end of each week to measure apparent food
consumption after accounting for food wasting (Koteja et al., 2003).
Food consumption was converted to caloric intake as the diets
differed in energy content (Meek et al., 2010).

Fecal sampling
At 14 weeks of age, individual mice were placed into a clean, empty
cage and watched until defecation. We obtained fecal samples from
149 individuals. The samples were placed into a sterile tube and
held on dry ice prior to storage at −80°C, where they remained until
DNA extraction.

Bacterial rRNA ITS analysis
Illumina bacterial rRNA internal transcribed spacer (ITS) libraries
were constructed as follows. PCRs were performed using a DNA
Engine thermal cycler (Bio-Rad Inc., Hercules, CA, USA) as 25-µl
reactions containing: 50 mmol l−1 Tris (pH 8.3), bovine serum
albumin (BSA) at 500 µg ml−1, 2.5 mmol l−1 MgCl2, 250 µmol l−1

of each deoxynucleotide triphosphate (dNTP), 400 nmol l−1 of the
forward PCR primer, 200 nmol l−1 of each reverse PCR primer, 2.5-
µl of DNA template, and 0.625 units JumpStart Taq DNA
polymerase (Sigma-Aldrich, St Louis, MO, USA). PCR primers
targeted a portion of the small-subunit (ITS-1507F,
GGTGAAGTCGTAACAAGGTA) and large-subunit (ITS-23SR,
GGGTTBCCCCATTCRG) rRNA genes and the hypervariable ITS
region (Ruegger et al., 2014), with the reverse primers including a
12-bp barcode and both primers including the sequences needed for

Illumina cluster formation; primer binding sites are the reverse and
complement of the commonly used small-subunit rRNA gene
primer 1492R (Frank et al., 2008) and the large-subunit rRNA gene
primer 129F (Hunt et al., 2006). PCR primers were only frozen and
thawed once. Thermal cycling parameters were as follows: 94°C for
5 min; 35 cycles of 94°C for 20 s, 56°C for 20 s and 72°C for 40 s;
followed by 72°C for 10 min. PCR products were purified using a
Qiagen QIAquick PCR Purification Kit (Qiagen, Valencia, CA,
USA) according to the manufacturer’s instructions. DNA
sequencing (single-end 250 base) was performed using an
Illumina MiSeq (Illumina, Inc., San Diego, CA, USA). Clusters
were created using template concentrations 2.5 pmol l−1 and phi X at
107,000 mm−2.

Data processing was performed with USEARCH v10.0 (Edgar,
2010). We used the UPARSE pipeline for de-multiplexing, length
trimming, quality filtering and operational taxonomic unit (OTU)
picking using default parameters or recommended guidelines that
were initially described in Edgar (2013) and which have been
updated at https://www.drive5.com/usearch/manual10/uparse_
pipeline.html. Briefly, after demultiplexing and using the
recommended 1.0 expected error threshold, sequences were
trimmed to a uniform length of 248 bp and then dereplicated.
Dereplicated sequences were subjected to error correction
(denoised) and chimera filtering to generate zero-radius
operational taxonomic units (ZOTUs) using UNOISE3 (Edgar,
2016b preprint). An OTU table was then generated using the otutab
command. ZOTUs with non-bacterial DNA were identified and
enumerated by performing a local BLAST search (Altschul et al.,
1990) of their seed sequences against the nucleotide database.
ZOTUs were removed if any of their highest scoring BLAST hits
contained taxonomic IDs within the rodent family, Fungi,
Viridiplantae or phi X. Taxonomic assignments to bacterial
ZOTUs were made with the SINTAX taxonomy prediction
algorithm (Edgar, 2016a preprint) on an updated SSU-ITS
database (Ruegger et al., 2014). This resulted in 2730 OTUs with
an average of 47,851 sequences per sample. Data were normalized
within each sample by dividing the number of reads in each OTU by
the total number of reads in that sample.

The bacterial rRNA ITS sequences were deposited in the
National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) under SRA BioProject Accession
PRJNA624662.

Statistical analyses
Juvenile wheel running and food consumption
As used in numerous previous studies of these lines of mice, we
used linear mixed models in SAS 9.4 Proc Mixed (SAS Institute,
Cary, NC, USA). The effect of line type is tested against the
variance among replicate lines, which are a nested random effect
within line type. Wheel access×line(line type), diet×line(line type)
and wheel access×diet×line(line type) were also nested random
effects. In these full models, the effects of wheel access, diet, line
type and their interactions were tested with 1 and 6 degrees of
freedom. If the covariance parameter estimate for higher-order
random effects was zero, we removed them in a stepwise fashion. In
other words, if the covariance parameter estimate for the three-way
interaction was 0, we removed thewheel access×diet×line(line type)
random effect. Then, if one of the two-way random interaction
effects was also zero, we removed it. However, we always retained
the line(line type) random effect, given the nature of the
experimental design (e.g. see Castro and Garland, 2018; Castro
et al., 2020; Swallow et al., 1998). For juvenile wheel running, we

Standard diet
(4% kJ from fat)

Western diet
(42% kJ from fat)

4 control lines 4 high runner lines

C, standard diet, wheels
(N=19)

HR, standard diet, wheels
(N=17)

C, standard diet, no wheels
(N=19)

HR, standard diet, no wheels
(N=17)

C, Western diet, wheels
(N=18)

HR, Western diet, wheels
(N=21)

C, Western diet, no wheels
(N=21)

HR, Western diet, no wheels
(N=17)

0Age in
weeks 

1 2 3 4 5 7

Birth Weaning

Early-life
diet/exercise
manipulation

Fecal
sampling

6 8 9 10 11 12 13 14

8-week
washout
period

Fig. 1. Early-life experimental design and treatment groups (N=149mice).
Fecal sampling occurred as adults (14 weeks of age) after the 8-week washout
period on standard diet with no wheel access.
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included wheel freeness as a covariate in the model. For caloric
intake, we included body mass as a covariate.
In these statistical models, we also tested for effects of the mini-

muscle phenotype (present in two of the HR lines) on juvenile
wheel running, juvenile caloric intake, adult gut microbiome
richness and relative abundance. The mini-muscle phenotype is
caused by an autosomal recessive allele, a single base pair change in
a myosin heavy chain gene (Kelly et al., 2013). Homozygotes for
this naturally occurring mutation are characterized by a 50%
reduction in hindlimb muscle mass, larger internal organs and
various other differences as compared with unaffected individuals
(Garland et al., 2002; Swallow et al., 2009; Wallace and Garland,
2016). In the present study, the number of mini-muscle individuals
varied among analysis. For example, of the 88 mice for which we
obtained wheel-running data during week 1 of juvenile exposures,
12 had the mini-muscle phenotype (all nine in line 3 and three of 11
in line 6). Of the 165 mice for which we obtained week 1 food
consumption data, 43 had the mini-muscle phenotype (all 21 in line
3 and five of 22 in line 6). Of the 149 mice for which we obtained
microbiome data, 25 had the mini-muscle phenotype (all 20 in line 3
and five of 20 in line 6).

Beta diversity of the adult gut microbiome
Gut microbiome membership and community structure were
compared by calculating unweighted UniFrac and Hellinger distance
matrices in QIIME version 1.9.1. Unweighted UniFrac distance
utilizes the presence and absence of bacterial species while accounting
for the phylogenetic relationship between bacterial species. For
statistical and graphical representation, we used an OTU table rarified
to an even sequencing depth of 14,000 reads per sample. We used a
principal coordinates analysis (PCoA) to visualize the communities in
a 3D space. For beta diversity, we used a PERMANOVA test in
QIIME to determine statistical significance (Anderson, 2001). For
these tests we did not treat replicate line as a nested random effect
because the software to do this is not currently available.

Alpha diversity of the adult gut microbiome
To determine the effects of diet, exercise, line type and their
interactions on alpha diversity of the adult gut microbiome, we used
the Chao1 index and Shannon index calculated in QIIME Version
1.9.1 from an OTU table rarified to the lowest common sequencing
depth of 14,000 reads. We also totaled the number of non-zero
OTUs identified in each mouse using the rarified OTU table. We
used the statistical procedures described above in ‘Juvenile wheel
running and food consumption’. Because ANOVAs have relatively
low power to detect interactions (Wahlsten, 1990), and following
our laboratory’s previous analyses of these mice (e.g. Belter et al.,
2004; Houle-Leroy et al., 2000), we considered interactions
significant if P<0.10.

Lower-level taxa summary comparisons
We compared the relative abundance data of identified phylum,
class, order, family, genus and species groups produced by the
summarize_taxa.py script in QIIME. Based on the simulations
reported by Aschard et al. (2019), we only analyzed taxa found in
>85% of the mice [phylum (N=6), class (N=9), order (N=8), family
(N=16), genus (N=17), species (N=26) and OTUs (N=140, of the
total 2730 identified OTUs)], which totaled 221 tests and 1761
P-values. We used the statistical procedures described above in
‘Juvenile wheel running and food consumption’. Bacterial relative
abundance data were log or arcsine square-root transformed to
normalize residuals (Brown et al., 2020; Kohl et al., 2016). P-values

were corrected for multiple comparisons using the false discovery
rate (FDR; Benjamini and Hochberg, 1995). For these analyses, we
accepted statistical significance at P<0.05 after adjustment for FDR.

RESULTS
Line type, diet and exercise affect juvenile wheel running
and food consumption
Diet had an interactive effect on wheel running across the 3 weeks of
early-life exposure (full statistical results are in Table S1). During
the first week, Western diet increased wheel running, but the effect
was greater in HRmice (interaction F1,76=7.62, P=0.0072; Fig. 2A),
and mini-muscle mice ran more than normal-muscle mice
(F1,76=6.12, P=0.0156). During the second week, mice with a
Western diet continued to run significantly more than those with
standard diet, and HR mice ran 2.6-fold more revolutions per day
than C mice, with no interaction between diet and line type
(interaction F1,76=0.51, P=0.4765; Fig. 2A). By the third week of
juvenile wheel access, HR mice ran 3.4-fold more than C mice and
diet no longer significantly affected wheel running.

During the first week of early-life exposure, diet and wheel access
had an interactive effect on caloric intake (interaction F1,143=26.62,
P<0.0001; Fig. 2B). Western diet increased caloric intake in all
groups, by ∼21% on average (F1,143=313.25, P<0.0001; Fig. 2B).
However, wheel access increased intake in mice on a standard diet
but decreased it in those on aWestern diet. During the second week,
mice on the Western diet had increased caloric intake (F1,6=37.71,
P=0.0009; Fig. 2B) and those with wheels consumed more than
mice without wheels (F1,6=25.18, P=0.0024; Fig. 2B). In the third
week, mice with wheels again consumed more calories than those
without wheels (F1,6=84.23, P<0.0001; Fig. 2B), but the effect of
diet was no longer significant. Mini-muscle mice consumed
significantly more food than normal-muscle mice during both
weeks 2 (F1,137=5.55, P=0.0199) and 3 (F1,136=4.97, P=0.0274).

Dominant phyla of the adult gut microbiome
The 2730 identified OTUs were classified into seven phyla, 22
classes, 36 orders, 58 families, 79 genera and 112 species.
Community composition for the entire set of experimental mice
(N=149) was dominated by the phyla Bacteroidetes (68.1±17.4%)
(mean±s.d.) and Firmicutes (27.9±16.7%), with additional phyla
being much less abundant: Proteobacteria (1.2±2.1%), Candidatus
Melanobacteria (0.3±0.6%), Tenericutes (0.2±0.3%) and
Actinobacteria (0.05±0.04%) (Fig. 3).

Juvenile diet and line type affect adult community
membership (Beta diversity)
Community membership measured by unweighted UniFrac
distance and by Hellinger distance plotted in a PCoA plot (Figs 4
and 5, respectively; corresponding statistical results in Tables 1 and
2, respectively) showed clustering of mice by line type and by
juvenile diet exposure. HR and C mice significantly clustered
independent of one another (PERMANOVA, F1,147=1.56, P=0.009,
Fig. 4A; PERMANOVA, F1,147=2.31, P=0.001, Fig. 5A). Mice fed
a juvenile Western diet resulted in significant clustering of samples
compared with mice fed a juvenile standard diet (PERMANOVA,
F1,147=2.72, P=0.001, Fig. 4B; PERMANOVA, F1,147=2.85,
P=0.001, Fig. 5B). Within both HR and C line types, mice
clustered together by diet (C, F1,75=1.64, P=0.007; HR
F1,70=0.001, P=0.001: Fig. S1F). Wheel access did not result in
significant clustering within line types (PERMANOVA, F1,70=1.30,
P=0.072, Fig. S1G). HR mice also clustered independently by diet
(PERMANOVA, F1,70=3.783, P=0.001, Fig. S2F).
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Early-life exposures, line type and their interactions affect
adult gut microbiome richness (alpha diversity)
For the total number of OTUs, early-life diet and exercise exposures
altered the adult gut microbial richness in a line-type-dependent

manner: the three-way interaction of juvenile diet, wheel access and
line type was significant (interaction F1,128=2.83, P=0.095;
Fig. 6A). Early-life Western diet tended to have a lasting impact
on gut microbiome diversity by reducing the total OTUs (ANOVA,
F1,6=5.67, P=0.055; Fig. 6A).

The three-way interaction of juvenile diet, exercise and line type
was significant for the Chao1 index, a corrected index of gut
microbial richness that accounts for rarer taxa (interaction
F1,128=2.83, P=0.013; Fig. 6B). Early-life exposure to Western
diet tended to have a lasting impact on the gut microbiome by
reducing adult gut community richness (ANOVA, F1,6=5.68,
P=0.054; Fig. 6B). The Shannon index, another measure of gut
microbial richness that accounts for the abundance of taxa in a
sample, was not statistically different among groups (Fig. 6C).

Juvenile Western diet affects adult gut microbiome
community
Of the 1760 P-values tested, only two remained significant at
P<0.05 after correcting for multiple comparisons using a Benjamini
and Hochberg FDR (see Table S2 for phylum through genus
P-values before FDR). Western diet significantly reduced the
relative abundance of the family Muribaculaceae, which is
commonly found in the mouse gut microbiome (ANOVA,
F1,128=19.2, P=0.021). This decrease is explained by the gut
bacterial species Muribaculum intestinale, which was found in all
mice from our study (ANOVA, F1,128=19.2, P=0.021; Fig. 7).
Muribaculum intestinale made up 0.38% of the identified OTUs.
Mini-muscle mice did not significantly differ in the relative
abundance of any of the tested taxa.

DISCUSSION
Our results constitute one of the first reports of juvenile diet having
long-lasting effects on the adult microbiome after a substantial
washout period (equivalent to ∼6 human years). Moreover, we
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found interactive effects of diet with early-life exercise exposure,
and a dependence of these effects on genetic background. The
overall bacterial community composition that we found (Fig. 3) is

similar to that reported in many other studies of adult laboratory
house mice (e.g. Benson et al., 2010; Lamoureux et al., 2017).
However, beta diversity metrics indicated that community
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Fig. 4. Communitymembership of the adult gutmicrobiome principal coordinate analysis (PCoA) using unweightedUniFrac distances. (A) Clustering of
mice by high runner (N=72) and control (N=77) lines of mice (PERMANOVA, F1,147=1.56,R2=0.010, P=0.009). (B) Clustering of mice byWestern diet (N=77) and
standard diet (N=72) (PERMANOVA, F1,147=2.72, R2=0.018, P=0.001). (C) Clustering of mice by wheel access (N=75) and no wheel access (N=74)
(PERMANOVA, F1,147=1.24, R2=0.008, P=0.096). Results of statistical analyses are shown in Table 1.
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membership was unequal between the two genetic line types we
studied (replicate, selectively bred HR and C lines of mice), and was
also affected by early-life Western diet (Figs 4, 5). Bacterial
richness and alpha diversity were also affected by an interaction of
juvenile diet, exercise and line type (Fig. 6). Finally, juvenile
Western diet significantly decreased the relative abundance of the
Muribaculaceae family driven by the speciesM. intestinale (Fig. 7).
Selective breeding for high voluntary wheel running resulted in

unique clustering of gut microbiomes by line type (Figs 4, 5). These
results are consistent with the fact that selection for wheel-running
behavior has caused many exercise-associated biological changes
that could influence the gut environment, including higher food
consumption even when housed without wheels, higher body
temperatures when active, and differences in circulating
concentrations of multiple hormones, including corticosterone, a
classic ‘stress hormone’ (Copes et al., 2015; Garland et al., 2016;
Malisch et al., 2009; Swallow et al., 2009; Wallace and Garland,
2016). Our results and those of other recent studies also demonstrate
the utility of selectively bred rodentmodels for understanding possible
coevolutionary changes in the microbiome (e.g. see Kohl et al., 2016;
Liu et al., 2015; van der Eijk et al., 2020; Zhang et al., 2020).
A Western diet can negatively impact the host’s normal gut

barrier function by increasing intestinal permeability (Martinez-
Medina et al., 2014) and by increasing inflammation of the gut
environment (Agus et al., 2016). Several studies have demonstrated
effects of aWestern diet on the gut microbiome in adult rodents. For
example, Western diet results in unique clustering of microbiome
communities (Carmody et al., 2015; Pindjakova et al., 2017). We
also found significant clustering of microbiome communities by
diet (Figs 4, 5). Previous studies of adult mice have reported that a
high-fat or high-sugar diet can decrease bacterial diversity
(Pindjakova et al., 2017; Sonnenburg et al., 2016; Turnbaugh
et al., 2008). Adult rats on standard chow supplemented with 10%
sucrose solution and a selection of cakes, biscuits and high-protein
foods continuously for 25 days had a significantly reduced alpha
diversity, evidenced by a reduction in the total number of OTUs
compared with control rats (Beilharz et al., 2017). In our study,

Western diet during the juvenile period increased wheel-running
behavior and food consumption in both selectively bred HR mice
and non-selected C mice (Fig. 2). Both altered diet and increased
food consumption can affect the gut environment and thus alter the
bacterial community. In principle, early-lifeWestern diet could have
altered the gut microbiome in a way that persists into adulthood, an
effect that we did indeed find (Figs 4–7).

Only one other publication has examined the long-lasting effects
of juvenile diet on the adult gut microbiome after a significant
washout period in mice. Mice with 3 weeks of juvenile high-fat diet
followed by a 7-week washout period had decreased alpha diversity
as measured by the Shannon index as adults (Fülling et al., 2020). In
our study, perturbation of the juvenile gut microbiome withWestern
diet also had long-lasting effects on species community indicators
of adult gut microbial richness by reducing the total number of
OTUs and the Chao1 index, though no differences in Shannon
diversity were found (Fig. 6). Similarly to Carmody et al. (2015),
who demonstrated that a high-fat, high-sugar diet in multiple inbred,
outbred and transgenic strains of mice resulted in clustering of mice
by both diet and genotype within diet treatment, we found
significant clustering of genetic lines within diet treatment
(Fig. S1), showing the response to diet can be genotype-dependent.

After correction for multiple comparisons of 1760 P-values
comparing taxa at the level of phylum, class, order, family, genus,
species and OTU, we found one species (and its family)
whose relative abundance was significantly decreased by juvenile
Western diet, Muribaculum intestinale (Fig. 7, Table S2). The
Muribaculaceae family is commonly found in mouse (but not
human) gut microbiomes (previously referred to as S24-7;
Lagkouvardos et al., 2016; Seedorf et al., 2014). Muribaculaceae
has been linked with propionate production, a short-chain fatty acid,
in a mouse longevity study (Smith et al., 2019). This family was also
seen to increase in abundance in mice given voluntary wheel access
while on a high-fat or standard diet, and decrease in relative
abundance in mice on a high-fat diet with or without exercise (Evans
et al., 2014). This finding is similar to our study in which the relative
abundance ofM. intestinale, a species of theMuribaculaceae family,
was unaffected by exercise but decreased in abundance with juvenile
Western diet (Fig. 7). Muribaculaceae belongs to the phylum
Bacteroidetes, one of the two most abundant phyla in the gut
microbiome. AWestern diet has been shown to usually decrease the
relative abundance of Bacteroidetes, a primarily acetate- and
propionate-producing phylum. while increasing the relative
abundance of Firmicutes, a primarily butyrate-producing phylum
(Carmody et al., 2015; den Besten et al., 2013; Ley et al., 2006). If
species in theMuribaculaceae family could potentially influence the
energy substrate availability to the host, this could lead to a
differential effect of diet and exercise treatments on normal host
function. As M. intestinale is a newly cultured species, it remains to
be seen what other functions it might have (Lagkouvardos et al.,
2019). In a small sample of adult wild-type andAC5KOmice (known
for their exercise-associated traits of longevity and increased
mitochondrial metabolism in skeletal muscle; Ho et al., 2015), a
taxon with high sequence similarity toM. intestinalewas enriched in
adult AC5KOmice after 5 weeks of treadmill training, suggesting that
M. intestinale is a potentially exercise-associated species (Dowden
et al., 2020).

To our knowledge, only one previous study of rodents has tested
for long-lasting effects of juvenile exercise on the adult microbiome.
Mika et al. (2015) found that juvenile rats given 6 weeks of wheel
access, followed by a 25-day washout period, tended (not
statistically significant) to have a decreased abundance of the

Table 1. Communitymembership of the adult gut microbiome assessed
by PERMANOVA statistical tests using unweighted UniFrac distances

SS d.f. F R2 P Figure

Line type 0.213 1, 147 1.560 0.010 0.009 4A
Diet 0.369 1, 147 2.719 0.018 0.001 4B
Wheel access 0.170 1, 147 1.243 0.008 0.096 4C
C:Diet 0.225 1, 75 1.644 0.021 0.007 4B, S1F
HR:Diet 0.328 1, 70 2.462 0.034 0.001 4B, S1F
C:Wheel access 0.116 1, 75 0.838 0.011 0.832 4C, S1G
HR:Wheel access 0.176 1, 70 1.304 0.018 0.072 4C, S1G

HR, high runner; C, control. Statistical analyses corresponding to Fig. 4.

Table 2. Communitymembership of the adult gut microbiome assessed
by PERMANOVA statistical tests using a Hellinger distance matrix

SS d.f. F R2 P Figure

Line type 1.150 1, 147 2.310 0.015 0.001 5A
Diet 1.414 1, 147 2.851 0.019 0.001 5B
Wheel access 0.497 1, 147 0.989 0.007 0.483 5C
C:Diet 0.534 1, 75 1.043 0.014 0.384 5B, S2F
HR:Diet 1.753 1, 70 3.783 0.051 0.001 5B, S2F
C:Wheel access 0.385 1, 75 0.749 0.010 0.843 5C, S2G
HR:Wheel access 0.458 1, 70 0.951 0.013 0.518 5C, S2G

Statistical analyses corresponding to Fig. 5.
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Firmicutes phylum compared with sedentary juveniles. We found
that early-life exercise significantly interacted with diet and line
type to influence gut microbial diversity (Fig. 6). Given that we have
shown long-lasting effects of relatively mild and natural early-life
changes (diet, exercise), more severe treatments, such as antibiotics,
might have even stronger long-lasting effects (Ma et al., 2020).

Limitations and future directions
When examining the gut microbiome, variation in sequencing
methods can lead to different results under similar experimental
conditions. Much of the literature consists of 16S rRNA analysis.
Instead, we sequenced the ITS rRNA gene for finer resolution of the

gut microbial community (Ruegger et al., 2014). This poses a
challengewhen comparing ITS data with 16S data. Nevertheless, by
examining broad patterns in diversity and community structure
(Figs 4–6), we were able find similar patterns between our data and
the literature (see above). For example, a Western diet tends to
decrease gut microbiome diversity (Fig. 6) and alters the gut
microbiome community measured by beta diversity (Figs 4, 5).

Wewere only able to sample feces and obtain microbial sequence
data for one time point. Logistical constraints precluded our
obtaining fecal samples at the beginning of the study. In future
studies, repeating this experiment with a baseline sample at weaning
and immediately after the juvenile exposure to diet and/or exercise
would increase the power to detect longitudinal changes. As we had
only the microbiome data after the washout period, we cannot know
when the effects of the experimental treatments first appeared. They
might have appeared during the 3-week treatment period, which
seems likely, or they might have appeared later, at any time prior to
when we took fecal samples. Regardless of when the effects first
appeared, they were detectable when we analyzed the adult fecal
samples. This is an important result, even in the absence of
information regarding the longitudinal trajectory of the effects.
Future studies should examine the time course of early-life effects.
In addition, study of the cecum would allow a more in situ view of
the microbiome.

We did not separate or sterilize cages, bedding, food or water,
thus giving the mice constant exposure to environmental bacteria.
This exposure should have tended to homogenize the gut
microbiome, thus possibly erasing any early-life effects of diet or
exercise. Nevertheless, we were able to detect such effects after a
substantial washout period, supporting the idea that the early-life
developmental period of the microbiome is sensitive and responsive
to change, and can be impacted in ways that resist subsequent
environmental perturbations.

Future experiments involving antibiotic reduction and
transplantation of the microbiome will be required to determine
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whether the unique microbial community of HR mice (Figs 4, 5),
which has potentially co-evolved during the selection experiment,
contributes to their high motivation and/or ability for sustained,
aerobically supported exercise (Hsu et al., 2015; Nay et al., 2019;
Okamoto et al., 2019; Scheiman et al., 2019). More specifically, one
could administer antibiotics to eliminate the existing gut
microbiome, monitor changes in wheel running, and then
transplant the HR microbiome into C mice and vice versa.
Additional groups would receive their own line-type-specific
microbiome in the reseeding phase of the experiment (i.e. HR to
HR and C to C). If a unique microbiome is partly responsible for the
HR phenotype, then we would predict that (1) antibiotics would
reduce their wheel running and (2) reseeding with HR (but not C)
microbiome would recover the normal wheel-running behavior for
HRmice. It is also possible that transplanting the HRmicrobiome to
C mice would increase their wheel running, at least if some other
inherent factor does not limit their running motivation or ability.
Overall, we found that an early-life Western diet had more long-

lasting effects on the microbiome than did early-life exercise. Future
studies will be required to determine whether this is a general result.
In particular, we need dose–response studies of how much exercise,
and what type of exercise, is needed to elicit a permanent,
potentially beneficial, change in the gut microbiome. The field also
needs more studies of how voluntary exercise can acutely change
the gut microbiome (e.g. by short-term or alternate-day wheel
access), combined with longitudinal sampling. Finally, milder
diet alterations should be examined, in addition to effects of
probiotics (Sanders et al., 2019).
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Agus, A., Denizot, J., Thévenot, J., Martinez-Medina, M., Massier, S., Sauvanet,
P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R. et al. (2016).
Western diet induces a shift in microbiota composition enhancing susceptibility to
adherent-invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032.
doi:10.1038/srep19032

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic
local alignment search tool. J. Mol. Biol. 215, 403-410. doi:10.1016/S0022-
2836(05)80360-2

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of
variance. Austral. Ecol. 26, 32-46. doi:10.1046/j.1442-9993.2001.01070.x

Aschard, H., Laville, V., Tchetgen, E. T., Knights, D., Imhann, F., Seksik, P.,
Zaitlen, N., Silverberg, M. S., Cosnes, J. and Weersma, R. K. (2019). Genetic

effects on the commensal microbiota in inflammatory bowel disease patients.
PLoS Genet. 15, e1008018. doi:10.1371/journal.pgen.1008018

Barton,W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E.,
Shanahan, F., Cotter, P. D. and O’Sullivan, O. (2018). The microbiome of
professional athletes differs from that of more sedentary subjects in composition
and particularly at the functional metabolic level. Gut 67, 625-633. doi:10.1136/
gutjnl-2016-313627

Batacan, R. B., Fenning, A. S., Dalbo, V. J., Scanlan, A. T., Duncan, M. J., Moore,
R. J. and Stanley, D. (2017). A gut reaction: the combined influence of exercise
and diet on gastrointestinal microbiota in rats. J. Appl. Microbiol. 122, 1627-1638.
doi:10.1111/jam.13442

Becker, S. L., Chiang, E., Plantinga, A., Carey, H. V., Suen, G. and Swoap, S. J.
(2020). Effect of stevia on the gut microbiota and glucose tolerance in a murine
model of diet-induced obesity. FEMS Microbiol. Ecol. 96, fiaa079. doi:10.1093/
femsec/fiaa079

Beilharz, J. E., Kaakoush, N. O., Maniam, J. and Morris, M. J. (2017). Cafeteria
diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin
receptors and gut microbiota in the rat.Mol. Psychiatry 23, 351-361. doi:10.1038/
mp.2017.38

Belter, J. G., Carey, H. V. and Garland, T., Jr. (2004). Effects of voluntary exercise
and genetic selection for high activity levels on HSP72 expression in house mice.
J. Appl. Physiol. 96, 1270-1276. doi:10.1152/japplphysiol.00838.2003

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B
Methodol. 57, 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh,
P. L., Nehrenberg, D., Hua, K. et al. (2010). Individuality in gut microbiota
composition is a complex polygenic trait shaped by multiple environmental and
host genetic factors. Proc. Natl. Acad. Sci. 107, 18933-18938. doi:10.1073/pnas.
1007028107

Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber,
A. D., Wu, F., Perez-Perez, G. I., Chen, Y. et al. (2016). Antibiotics, birth mode,
and diet shape microbiome maturation during early life. Sci. Transl. Med. 8,
343ra82. doi:10.1126/scitranslmed.aad7121
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Wheel Access 4C 0.170 1, 147 1.243 0.008 0.096
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Figure S1.

Figure S1.  F. Community membership of the adult gut microbiome Principal Coordinate Analysis using unweighted 

UniFrac distances.  Clustering of mice by HR:WD (N=38), HR:SD (N=34), C:WD (N=39), and C:SD (N=38).  G. Clustering 

of mice by HR:Wheel access (N=38), HR:No wheel access (N=34), C:Wheel access (N=37), H:No wheel access (N=40).  

H. Statsitical results.
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H. Figure Sum of Squares D. F. F R2 P

Linetype 5A 1.150 1, 147 2.310 0.015 0.001

Diet 5B 1.414 1, 147 2.851 0.019 0.001

Wheel Access 5C 0.497 1, 147 0.989 0.007 0.483

C:Diet 5B, Sup. F 0.534 1, 75 1.043 0.014 0.384

HR:Diet 5B, Sup. F 1.753 1, 70 3.783 0.051 0.001

C:Wheel Access 5C, Sup. G 0.385 1, 75 0.749 0.010 0.843
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Figure S2. F. Community membership of the adult gut microbiome Principal Coordinate Analysis using a Hellinger 

distance matrix.  Clustering of mice by HR:WD (N=38), HR:SD (N=34), C:WD (N=39), and C:SD (N=38).  G. Clustering of 

mice by HR:Wheel access (N=38), HR:No wheel access (N=34), C:Wheel access (N=37), C:No wheel access (N=40). 

H. Statsitical results. 
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Early-life Trait N D.F. Plinetype Pexercise Pdiet Pdiet x linetype Pdiet x exercise Pexercise x linetype Pdiet x linetype x exercise Pbody mass Pmini-muscle

Week 1 Revolutions/day 88 6. 76 0.0854 NA <0.0001 0.0072 NA NA NA NA 0.0156
Week 2 Revolutions/day 88 6, 76 0.0320 NA 0.0188 0.4765 NA NA NA NA 0.9060
Week 3 Revolutions/day 88 6, 80 0.0006 NA 0.2848 0.4950 NA NA NA NA 0.3800
Week 1 Caloric Intake 165 6, 143 0.7158 0.7553 <0.0001 0.2983 <0.0001 0.2399 0.5121 <0.0001 0.9206
Week 2 Caloric Intake 165 6, 137 0.0658 0.0024 0.0009 0.2030 0.2941 0.3391 0.1514 <0.0001 0.0199
Week 3 Caloric Intake 164 6, 136 0.3158 <0.0001 0.8676 0.8806 0.3842 0.0881 0.5950 <0.0001 0.0274

Table S1.  P values from analyses of juvenile wheel running and caloric intake.  Tests for main and interactive effects on juvenile wheel 
running and caloric intake.  For wheel running, a measure of wheel freeness was included but was not significant (results not shown); 
for caloric intake, body mass was included as a covariate.  Significance levels (P values; bold indicates P<0.05, two-tailed, unadjusted 
for multiple comparisons).
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Table S2. Table with Phylum through Genus p values for taxa found in ≥85% of the population. 448 p values. P values ≤ 0.1 

(not adjusting for multiple comparisons) are highlighted in red.

ANOVA

Taxon N Model

Classi-

fication Diet Exercise Linetype

Diet*Exe

rcise

Exercise*L

inetype

Diet*Lin

etype

3-way 

Inter-

action Mini

Actinobacteria 149 reduced phylum 0.8360 0.3004 0.3197 0.4088 0.8155 0.9529 0.7841 0.8522

Bacteroidetes 149 reduced phylum 0.4663 0.6103 0.3558 0.0585 0.2107 0.8462 0.2428 0.8854

Firmicutes 149 reduced phylum 0.4052 0.4555 0.4739 0.1604 0.2914 0.9176 0.1440 0.9672

Proteobacteria 149 reduced phylum 0.9310 0.0726 0.6975 0.0096 0.1802 0.8713 0.9489 0.9402

Tenericutes 135 kept DIET*LINE(LINETYPE) phylum 0.4340 0.3670 0.2437 0.0126 0.4680 0.5586 0.8328 0.8520

Candidatus 

Melainabacteria

127 kept WHLACC*LINE(LINETYP) phylum 0.2623 0.3663 0.6868 0.3120 0.6160 0.7507 0.4311 0.8290

Mollicutes 132 full class 0.3551 0.1318 0.7030 0.0350 0.5210 0.2572 0.7379 0.8583

Coriobacteria 149 reduced class 0.9976 0.2449 0.2038 0.4585 0.6891 0.9959 0.6782 0.7607

Bacteroidia 149 reduced class 0.0564 0.6764 0.2399 0.6080 0.3958 0.7162 0.3812 0.8636

Flavobacteriia 147 reduced class 0.3993 0.1110 0.1607 0.2445 0.4951 0.4104 0.1723 0.3715

Bacilli 149 full class 0.2314 0.4298 0.8555 0.7741 0.7698 0.8553 0.9322 0.4307

Clostridia 149 kept whlacc*line(linetype) class 0.1194 0.4476 0.6615 0.2097 0.9554 0.4021 0.5150 0.8490

Erysipelotrichia 149 full class 0.6853 0.9820 0.2273 0.5235 0.8904 0.7396 0.1582 0.5717

Deltaproteobacteria 149 reduced class 0.6092 0.1772 0.8848 0.0219 0.5498 0.8843 0.4342 0.9367

Epsilonproteobacteria 148 reduced class 0.7460 0.4524 0.3640 0.0067 0.0499 0.0284 0.4897 0.7552

Eggerthellales 149 reduced order 0.9892 0.3061 0.2376 0.7083 0.9535 0.7721 0.7326 0.8387

Bacteroidales 149 reduced order 0.0408 0.6974 0.2289 0.7505 0.4609 0.8790 0.4542 0.8376

Flavobacteriales 132 reduced order 0.3907 0.1417 0.1368 0.2050 0.5186 0.4722 0.2296 0.4601

Lactobacillales 149 full order 0.2293 0.4451 0.8519 0.8139 0.7896 0.8688 0.9463 0.3737

Clostridiales 149 full order 0.0966 0.4501 0.7298 0.3393 0.8976 0.4949 0.4539 0.8275

Erysipelotrichales 149 full order 0.6853 0.9820 0.2273 0.5235 0.8904 0.7396 0.1582 0.5717

Desulfovibrionales 149 reduced order 0.6092 0.1772 0.8848 0.0219 0.5498 0.8843 0.4342 0.9367

Campylobacterales 148 reduced order 0.7460 0.4524 0.3640 0.0067 0.0499 0.0284 0.4897 0.7552

Eggerthellaceae 149 reduced family 0.9892 0.3061 0.2376 0.7083 0.9535 0.7721 0.7326 0.8387

Bacteroidaceae 149 kept DIET*LINE(LINETYPE) family 0.3250 0.0566 0.3814 0.2480 0.8602 0.0511 0.5977 0.4949

Muribaculaceae 149 kept WHLACC*LINE(LINETYP) family 0.1570 0.000024 0.6391 0.9986 0.8970 0.7370 0.5565 0.5123

Porphyromonadaceae 149 kept DIET*LINE(LINETYPE) family 0.1457 0.9684 0.1626 0.0637 0.3570 0.8354 0.7085 0.2915

Prevotellaceae 148 kept DIET*LINE(LINETYPE) family 0.7223 0.9836 0.5898 0.8044 0.2458 0.1490 0.6041 0.3624

Rikenellaceae 149 reduced family 0.3591 0.2649 0.9491 0.5458 0.2663 0.8497 0.5249 0.4978

Tannerellaceae 149 kept WHLACC*LINE(LINETYP) family 0.5771 0.4489 0.7839 0.8406 0.1861 0.1165 0.0326 0.9592

Flavobacteriaceae 132 reduced family 0.3907 0.1417 0.1368 0.2050 0.5186 0.4722 0.2296 0.4601

Lactobacillaceae 149 full family 0.2288 0.4450 0.8515 0.8137 0.7906 0.8684 0.9457 0.3733

143 reduced family 0.0829 0.5881 0.0750 0.1883 0.4206 0.0884 0.8345 0.0157

138 full family 0.7357 0.6149 0.3578 0.4696 0.9538 0.9395 0.2115 0.9677

149 full family 0.0614 0.4646 0.4434 0.1929 0.6238 0.5032 0.2879 0.2585

149 kept WHLACC*LINE(LINETYP) family 0.7550 0.6666 0.7603 0.7551 0.8199 0.0761 0.9172 0.9868

149 full family 0.6853 0.9820 0.2273 0.5235 0.8904 0.7396 0.1582 0.5717

family 0.6092 0.1772 0.8848 0.0219 0.5498 0.8843 0.4342 0.9367

Clostridiaceae

Eubacteriaceae

Lachnospiraceae

Peptococcaceae

Erysipelotrichaceae

Desulfovibrionaceae

Helicobacteraceae

149 reduced

149 reduced family 0.7460 0.4524 0.3640 0.0067 0.0499 0.0284 0.4897 0.7552

149 reduced genus 0.8959 0.3729 0.2462 0.6079 0.9669 0.6887 0.5569 0.9432

149 kept DIET*LINE(LINETYPE) genus 0.3250 0.0566 0.3814 0.2480 0.8602 0.0511 0.5977 0.4949

149 removed 3-way genus 0.1570 0.0047 0.6391 0.9986 0.8970 0.7479 0.5566 0.5123

148 kept Diet*Line(Linetype) genus 0.7223 0.9836 0.5898 0.8044 0.2458 0.1490 0.6041 0.3624

149 reduced genus 0.3591 0.2649 0.9491 0.5458 0.2663 0.8497 0.5249 0.4978

149 kept WHLACC*LINE(LINETYP) genus 0.6049 0.5481 0.7654 0.8892 0.1848 0.1506 0.0367 0.8385

149 full genus 0.2288 0.4450 0.8515 0.8137 0.7906 0.8684 0.9457 0.3733

138 full genus 0.7357 0.6149 0.3578 0.4696 0.9538 0.9395 0.2115 0.9677

137 full genus 0.5146 0.9474 0.6404 0.4269 0.5480 0.7750 0.5547 0.4490

149 reduced genus 0.0384 0.3485 0.4264 0.0786 0.7446 0.5565 0.1710 0.1976

148 full genus 0.2441 0.7499 0.3556 0.1516 0.3188 0.2826 0.3473 0.4316

134 reduced genus 0.7629 0.3761 0.5139 0.0640 0.4040 0.5833 0.1096 0.1745

146 Kept WHLACC*LINE(LINETYPEgenus 0.5310 0.3067 0.4209 0.4674 0.3496 0.3693 0.5582 0.6724

147 reduced genus 0.3132 0.9674 0.6340 0.6402 0.4461 0.3035 0.2706 0.9681

genus 0.7131 0.8948 0.4867 0.7333 0.5042 0.9056 0.1967 0.8524

genus 0.6020 0.1748 0.8789 0.0222 0.5478 0.8793 0.4371 0.9398

Adlercreutzia

Bacteroides

Muribaculum

Prevotella

Alistipes

Parabacteroides

Lactobacillus

Eubacterium

Anaerotignum

Lachnoclostridium

Flavonifractor

Intestinimonas

Erysipelatoclostridium

Faecalibaculum

Turicibacter

Desulfovibrio

Helicobacter

145 full

149 reduced

148 reduced genus 0.7460 0.4524 0.3640 0.0067 0.0499 0.0284 0.4897 0.7552

Table S2.  Significance levels for Phylum, etc.

Excel file for table of p values for phylum through genus.  Taxa 

found in >85% of the mice were analyzed [phyla (N=6), class (N=9), 

order (N=8), family (N=16), genus (N=17), species (N=26), and 

OTUs (N=140, of the total 2,730 identified OTUs) totaling 221 tests 

and 1,761 P values.  448 P values shown in the table.  P values 

before FDR ≤ 0.1 are highlighted in red.

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

Journal of Experimental Biology: doi:10.1242/jeb.239699: Supplementary information


