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required for maturation of the fetal intestine
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ABSTRACT

As embryos mature, cells undergo remarkable transitions that are
accompanied by shifts in transcription factor regulatory networks.
Mechanisms driving developmental transitions are incompletely
understood. The embryonic intestine transitions from a rapidly
proliferating tube with pseudostratified epithelium prior to murine
embryonic day (E) 14.5 to an exquisitely folded columnar epithelium
in fetal stages. We sought to identify factors driving mouse fetal
intestinal maturation by mining chromatin accessibility data for
transcription factor motifs. ATAC-seq accessible regions shift during
tissue maturation, with CDX2 transcription factor motifs abundant at
chromatin-accessible regions of the embryo. Hepatocyte nuclear factor
4 (HNF4) transcription factor motifs are the most abundant in the fetal
stages (>E16.5). Genetic inactivation of Hnf4a and its paralog Hnf4g
revealed that HNF4 factors are redundantly required for fetal
maturation. CDX2 binds to and activates Hnf4 gene loci to elevate
HNF4 expression at fetal stages. HNF4 and CDX2 transcription factors
then occupy shared genomic regulatory sites to promote chromatin
accessibility and gene expression in the maturing intestine. Thus,
HNF4 paralogs are key components of an intestinal transcription factor
network shift during the embryonic to fetal transition.

KEY WORDS: HNF4 transcription factors, Developing intestine,
Maturation, Chromatin

INTRODUCTION
The developing embryo is a collection of partially fated cells that
expand exponentially during the stages of organogenesis, at
approximately embryonic day (E) 9.5 to E13.5 in mice (Cao
et al., 2019). As development proceeds into fetal stages, specified
cells undergo transitions to acquire the characteristics of mature
tissues. The mechanisms of these developmental transitions are not
completely understood but are of great importance in understanding
the basic mechanisms of development and developmental disorders,
and in facilitating the efforts of regenerative medicine.

The embryonic gut tube arises from endoderm after gastrulation
and is specified along the anterior—posterior axis into distinct
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derivative endodermal organs. The primitive gut divides into
foregut, midgut and hindgut; the small intestine develops primarily
from the midgut. Murine gut tube formation is completed by E9.5
and its inner lining consists of a highly proliferative pseudostratified
epithelium as the gut tube elongates. From E14.5 to E18.5, the tissue
undergoes a remarkable transition to a columnar epithelium and the
processes of villus morphogenesis, elongation and maturation occur
(Chin et al., 2017; Walton et al., 2016a; Wells and Spence, 2014).
The transcriptional regulatory mechanisms triggering this embryonic
(defined here as the time prior to villus morphogenesis) to fetal
(defined here as stages post villus emergence) transition in the
developing gut remain unclear.

A shift in transcription factor regulatory networks accompanies the
majority of known cellular transitions (Niwa, 2018; Wilkinson et al.,
2017). Transcription factors function at distal genomic regulatory
regions known as enhancers, which are the primary drivers of tissue-
specific gene expression (Consortium, 2012; Nord et al., 2013; Shen
et al., 2012; Visel et al., 2009). In our efforts to understand the
mechanisms driving developmental transitions in the gut, we recently
mapped chromatin profiles of the esophagus, forestomach,
hindstomach and small intestine over developmental time. We noted
a clear transition in chromatin accessibility within the developing
intestine that corresponds to the stage in which the morphogenetic
events reshaping the intestine occur (~E15.5). The transcription factor
CDX2 operates on both sides of this developmental transition. In the
early embryonic intestine (prior to E13.5), CDX2 is required for
intestinal specification and loss of CDX2 leads to ectopic features of
stomach and esophageal tissues in the intestine (Banerjee et al., 2018;
Gao et al., 2009; Grainger et al., 2010; Kumar et al., 2019). Acute
inactivation of CDX2 at later developmental timepoints (post E13.5)
compromises mature tissue functions, but intestinal identity is
maintained (Banerjee et al., 2018; Kumar et al., 2019; Verzi et al.,
2011). Although CDX2 is a clear driver of intestinal specification and
plays an additional role in driving fetal maturation, it remains unclear
how this developmental transition occurs.

In this study, we aimed to find transcription factors that could
function specifically in intestinal maturation. We found that genomic
regions that become increasingly accessible at fetal stages are
most enriched for DNA-binding motifs known to bind to the HNF4
transcription factor family. In adult intestine, HNF4A and HNF4G
have been shown to drive expression of genes important for digestive
physiology (Boyd et al., 2009; Cattin et al., 2009; Lindeboom et al.,
2018). HNF4A binding activity is modulated by the microbiome
(Davison et al., 2017) and suppressed in a mouse model of
ulcerative colitis (Chahar et al., 2014). We recently demonstrated
that HNF4A and HNF4G redundantly drive enterocyte identity in
adult tissues (Chen et al,, 2019). Although HNF4 transcription
factors have been studied in a number of developmental contexts,
their redundant functions have not been assayed in the context of the
developing gut.
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Hnf4a deletion is embryonically lethal, with defects in the
visceral endoderm (VE) (Chen et al., 1994; Duncan et al., 1997).
Complementation of Hnf4a~'~ embryos with Hnf4a”* VE by
tetraploid aggregation (Duncan et al., 1997; Li et al.,, 2000) or
conditional deletion of Hnf4a (Babeu et al., 2009; Garrison et al.,
2006; Parviz et al., 2003) allowed for the investigation of HNF4
function in later developmental stages. In the liver, Hnf4a was
dispensable for liver specification but was essential for hepatocyte
differentiation (Hayhurst et al., 2001; Li et al., 2000; Parviz et al.,
2003). However, no consequence of HNF4A loss in the developing
small intestinal epithelium has been observed. This could be a result
of inefficient depletion in the small intestine caused by the mosaic
action of the Foxa3-Cre driver, as suggested by Garrison et al.
(2006). Inactivation of conditional Hnf4a alleles using the Villin-
Cre driver resulted in no embryonic phenotype (Babeu et al., 2009),
possibly a result of the relatively late onset of Villin-Cre expression
(Madison et al., 2002) or unappreciated genetic redundancy with
Hnf4g. Here, we demonstrate that intestinal expression of Hnf4
paralogs is elevated during embryonic to fetal transition and that
Hnf4 genes depend on CDX2 for expression in both mice and
humans. Analysis of chromatin accessibility and data from
chromatin immunoprecipitation combined with DNA sequencing
(ChIP-seq) in the developing and adult gut supports a model in
which the transcription factor CDX2 activates Hnf4 gene
expression, and HNF4 and CDX2 together drive tissue maturation
by activating genes important for intestinal function in post-natal
life. We have generated a mouse model lacking HNF4 factors in the
embryonic intestine to show that although HNF4 factors are
dispensable for intestinal specification and villus morphogenesis,
they are crucial for maturation of the fetal intestine.

RESULTS

Chromatin landscapes indicate that HNF4 factors are more
likely to function in intestinal maturation than specification
Deciphering the mechanisms of tissue maturation is crucial in
understanding developmental disorders and facilitating efforts in
regenerative medicine. Developmental transitions are accompanied
by changes in chromatin accessibility and transcription factor
regulatory networks. To help understand the regulatory mechanisms
driving intestinal maturation, we re-analyzed ATAC-seq (assay for
transposase-accessible chromatin using sequencing) data (Banerjee
et al., 2018) to identify chromatin-accessible regions in isolated
intestinal epithelial cells (Fig. 1A). Three categories of accessible
regions were identified (MACS P value <107°): 2644 regions
(cluster 1) were accessible at E11.5 and remained accessible at all
stages examined; 10,544 regions (cluster 2, ‘maturation-enriched
regions’) of intestinal chromatin were progressively accessible;
and 30,702 regions (cluster 3, ‘embryo-enriched regions’) lost
accessibility from E11.5 to adult (Fig. 1A; Table S1). Notably, a
gain in accessibility at maturation-enriched regions coincided
with the loss of accessibility at embryo-enriched regions. This
E14.5-16.5 transition stage is defined by villus morphogenesis
and maturation. To identify the regulatory complexes probably
operating during this developmental transition, we applied DNA-
binding motif analysis. Regions selectively accessible in the
maturing gut exhibited HNF4A/G as the top-scoring motif
(Fig. 1B; Table S1), suggesting that HNF4 factors function in
maturation of the developing gut. Conversely, CDX2 was among
the most prevalent transcription factor motifs in the 30,702 regions
that are more accessible in embryonic epithelium (Fig. 1B;
Table S1). H3K27ac (Kazakevych et al., 2017), which marks
active enhancer regions, was enriched at stage-specific accessible

chromatin regions defined by ATAC-seq (Fig. 1C), corroborating
the putative regulatory functions of these regions. Gene ontology
analysis suggested that genes near the accessible regions of the early
embryonic intestine function in intestinal specification and
morphogenesis, whereas genes near accessible chromatin in the
maturing intestine exhibit function consistent with mature tissue
(Fig. 1D; Table S1). DNA-binding motif enrichment analysis at
each timepoint revealed that although CDX2 binding motifs were
enriched as early as E11.5, HNF4 binding motifs were first detected
at E14.5 and became more prevalent at accessible chromatin regions
of fetal and adult stages (Fig. S1A). Mirroring their motif
enrichment profiles, we found that Cdx2 transcripts were highly
and equally expressed across early embryonic to adult stages,
whereas Hnf4 transcripts were not robustly expressed until fetal and
adult stages (Fig. 1E). Protein expression levels of HNF4 factors
(Fig. S1B,C) appeared to increase over developmental time,
consistent with the increase in transcript levels. Similarly, human
CDX?2 expression was observed upon intestinal specification of
human embryonic stem cell (ESC)-derived endoderm by FGF and
WNT, whereas elevated expression of HNF4A and HNF4G was not
observed until cultures were further matured into human intestinal
organoids (Fig. 1F; Fig. S1D). Taken together, the chromatin
landscapes, DNA motif enrichment and expression profiles of
intestinal epithelial cells across developmental time suggest that
HNF4 factors are more likely to function in tissue maturation than in
intestinal specification.

HNF4 factors are dispensable for intestinal specification

and villus morphogenesis, and CDX2 functions upstream

of HNF4 factors

To test the function of HNF4 in the developing gut, we inactivated
conditional alleles of Hnf4a (Hayhurst et al., 2001) in the gut
endoderm using the Shh-Cre driver (Harfe et al., 2004), which is
activated in the intestinal epithelium starting at ~E9.5. We also
examined germline null embryos lacking Hnf4g mediated by
CRISPR knockout (Chen et al., 2019), and embryos with both
HNF4 paralogs simultancously deleted (hereafter referred to
Hnf4aX°, Hnf4y*© and Hnf4ayP%©; Fig. S1E,F). As reported by
this group and others (Banerjee et al., 2018; Gao et al., 2009;
Grainger et al., 2010; Kumar et al., 2019), Cdx2%? in the early
embryonic gut epithelium leads to an intestine exhibiting
hindstomach characteristics (ATPase- and foveolar PAS-positive
cells) in the jejunum and stratified squamous esophageal
characteristics (p63-positive cells) in the ileum. However, similar
characteristics were not observed in the Hnf4oy”X° embryos
(Fig. 2A,B), suggesting that HNF4 factors are dispensable for
intestinal specification. These findings are consistent with the
analysis of accessible chromatin (see above, Fig. 1), in which CDX2
but not HNF4 motifs are enriched at regulatory regions most active
in the E11.5 embryonic intestine (Fig. 1B; Fig. S1A).

Because CDX2 is required for intestinal specification but HNF4
factors appear dispensable, we hypothesized that CDX2 might
function upstream of HNF4 factors. Examination of CDX2 ChIP-seq
data revealed that CDX2 bound to loci of Hnf4a and Hnf4g at E13.5
and the ChIP-seq signal strengthened at E16.5 (ChIP-seq panel in
Fig. 2C). Loss of CDX2 resulted in loss of chromatin accessibility at
the gene loci of Hnf4 factors (ATAC-seq panel in Fig. 2C) and
reduced Hnf4 transcript (Fig. 2D) and protein levels (Fig. 2E),
suggesting that CDX2 is a direct activator of Hnf4a, which is
consistent with previous findings by Gao et al. (2009). Hnf4g
expression was similarly dependent on CDX2 (Fig. 2C-E); however,
because of the later onset of Hnf4g expression, these differences first

2

DEVELOPMENT


http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.179432.supplemental

RESEARCH ARTICLE Development (2019) 146, dev179432. doi:10.1242/dev.179432

A B C
~ E11.5 E14.5 E16.5 Adult a 5 Cluster2
oY T -~ uster: uster
2 ; E 3 E 3
éﬁ — :_I,_; =% Maturati Motif TFs  pvalue rank 5315‘
% |i Maturation L &
‘Ev : 'hd. /;ECAAA TQCYA HNF4A/G 1e-1671 1 % "g,)
83| ¢ enriched L=~ 1 c T A
. 38 Z2ZATCASTCAE Ates  1e-1449 2 g
= < AA -
20 ] ACATAASESSE  caad 1eass 3 S8 S'A
» L : s5<
= e GGECFECCE KLF5  1e-302 4 T ,
8 : ; v A N AAA -2Kb +2Kb
g ACCCATAANASE o 1eam s
E Cluster3 . Cluster 3
E : Motif TFs pvalue rank ]
T m i Emb 9 c
0 e mbryo o
&R g GOCGCCTASTOG crort 1e2208 1 = 2
< 5% | GCCATAAA X2 lem4d 2 g §4
: : ! K
< : : SRACTZAAACA  rFoxal 1e1203 3 g é’ e
7.4 AATGATTZAC  wnFia/B 1e689 4 T P a—
CSLCAAAGTSCA HnFaa/ 1e-283 8 _— E;:-5
-2Kb +2Kb
D
ell fate commitmen etabolic process
Cell fat it t Metaboli
g I Embaonic orian morihoienesis I TransEort
S
& Stem cell differentiation I Lipid metabolic process
o
o I Emb“onic development I Brush border
0 3 6 9 12 15 18 21 0 25 50 75 100 125 150 175 200 M Cluster 2 Genes
-logy0( Binom raw p-value) -log,o( Binom raw p-value) M Cluster 3 Genes
E
<«————— 10kb 35kb 35kb
€ 407155 4007E12 5 4007E15 5
o | L | |
€ o 20 [N 0 0
S Y s " e1as ° enas
c 0 "\ 0 || TN 0 T
G a0 gres 4 E165 - Y ees
2 9 M A wilh 0 [ I 0 N I I OO T
< Y Adult “?° Adult " %0 Aduft ‘ ‘ J ’Il ﬂ
Z .. " . . 0 | “ L 0 ’ I_ .
Cdx2 P e sl Hnf4
Hnfdo Cid
F CDX2 HNF4A HNF4G
hESC
endoderm

budded intestinal spheroid
human intestinal organoid

0 30 60 90 120 150 O 10 20 30 40 50 O 4 8 12 16 20
RNA-seq FPKM value RNA-seq FPKM value RNA-seq FPKM value

Fig. 1. Chromatin landscapes indicate that HNF4 factors function in maturation of the developing gut. (A) ATAC-seq (GSE115541, n=2 biological
replicates per timepoint; isolated embryonic epithelium was collected from the entire small intestine) data defined regions of accessible chromatin across indicated
stages of mouse intestinal epithelium development (MACS P value <10~%). K-means clustering analysis reveals a shift in accessible enhancer chromatin of
intestinal epithelial cells across developmental time. (B) HOMER de novo DNA-motif enrichment analysis of ATAC-seq regions (MACS P value <10~°) shows that
CDX2 binding sequences are more prevalent in accessible regions of the early embryonic state (embryo-enriched, cluster 3), whereas HNF4 binding sequences
are more prevalent in accessible regions of the fetal and adult states (maturation-enriched, cluster 2). (C) H3K27ac ChlIP-seq (GSE89684, n=2 biological
replicates per timepoint) profiles demonstrate that the active chromatin marker is enriched in a stage-specific manner, corresponding to embryo-specific or P60
adult-specific accessible regions. (D) GREAT GO term analysis shows distinct gene ontologies of target genes linked to stage-specific ATAC-seq sites within
20 kb. (E) RNA-seq of purified epithelium (GSE115541, n=2 biological replicates per timepoint; isolated embryonic epithelium was collected from the entire small
intestine) shows that Cdx2 is highly and equally expressed across developmental time, whereas Hnf4a and Hnf4g are not robustly expressed until E14.5 and
E16.5, respectively. (F) RNA-seq (E-MTAB-4168) shows that CDX2 expression is induced when human endoderm is specified to intestine by treatment with FGF4
(500 ng/ml) and CHIR99021 (2 uM; WNT agonist). By contrast, HNF4A/G expression is not induced until human intestinal organoids are formed by subsequent
differentiation steps. See schematic in Fig. S1D for details on human intestinal organoid differentiation conditions. Data are presented as meanzts.e.m. At least
three biological replicates are included per stage, and samples from the same stage are grouped and presented.
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Fig. 2. HNF4 is activated by CDX2 in the developing gut, but HNF4 is not required for intestinal specification. (A) Inmunostaining of ATPase and p63
(representative of four biological replicates) in E18.5 control, Shh-Cre;Cdx2" (Cdx2XC) and Shh-Cre;Hnf4a";Hnf4gC"sPrCriser (Hnf4ayP<C) embryos. The
hindstomach marker ATPase is ectopically expressed in the Cdx2%© jejunum but not in the control and Hnf4ay”*© jejunum. The forestomach marker p63 is
ectopically expressed in the Cdx2X ileum (squamous mucosa) but not in the control and Hnf4oy© ileum. (B) PAS staining indicates that normal intestinal
goblet cells are replaced with cells resembling gastric foveolar cells (PAS-positive cells at apical cell surface) in the Cdx2X© jejunum of E18.5 embryos, but not in
the control or Hnf4ayPX° jejunum (representative of four biological replicates). (C) CDX2 binds to Hnf4a and Hnf4g loci at E13.5 and E16.5 (CDX2 ChIP,
GSE115314, n=2 biological replicates; whole small intestine epithelium), and accessible chromatin is compromised at gene loci of Hnf4a and Hnf4g upon CDX2
loss (ATAC-seq, GSE115314, n=2 biological replicates; whole small intestine epithelium). Asterisks denote putative regulatory regions. (D) The transcript levels of
Hnf4a and Hnf4g are significantly downregulated in the intestinal epithelial cells of the Shh-Cre;Cdx2K°. Data are presented as meants.e.m (RNA-seq,
GSE115541, n=2 or 3 biological replicates; whole small intesitne epithelium). Statistical tests are embedded in DESeq2 at ***P<0.001, **P<0.01 and *P<0.05.
(E) Immunostaining of HNF4A and HNF4G shows reduced protein levels of HNF4 paralogs in E18.5 Cdx2X© (representative of four biological replicates). (F) qRT-
PCR shows reduced transcript levels of HNF4A and HNF4G in human intestinal organoids derived from CDX2¢"P™© human ESCs compared with organoids
derived from control cells. Data are presented as meants.e.m. (n=3 biological replicates, Student’s t-test, two-sided at P<0.001*** and P<0.05*). Scale bars:

50 ymin A,B,E.

become apparent at E16.5 (Fig. 2D). In developing human intestine,
HNF4 factor expression is similarly dependent on CDX2, as reflected
by measurement of HNF4 transcript levels in human intestinal
organoids derived from control or CDX2¢*P"X0 human ESCs
(Fig. 2F). These results indicate that expression of HNF4 factors is
dependent on CDX2 during fetal maturation of the intestine.

CDX2 bound to both maturation-enriched and embryo-enriched
regions of intestinal accessible chromatin (ATAC-seq regions in
Fig. 1A) at E13.5. When the intestine is mature, the CDX2
and HNF4 ChIP-seq signal was most robust at maturation-
enriched regions, with comparatively less binding at embryonic
accessible regions (Fig. 3A.,B), suggesting that HNF4 and
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Fig. 3. Chromatin regions that become accessible in the fetal tissue are bound by CDX2 and HNF4. Genes near these regions are activated at fetal stages.
(A,B) ChiP-seq profiles show that CDX2 (GSE115314, n=2 biological replicates; whole small intestine epithelium) binds to both maturation-enriched (cluster 2 in
Fig. 1A) and embryo-enriched (cluster 3 in Fig. 1A) regions of intestinal accessible enhancer chromatin in E13.5 embryos. When tissues become mature, CDX2
(GSE34568 and GSE115314, n=2 biological replicates) and HNF4 (GSE112946, n=2 biological replicates per HNF4A and HNF4G ChlIP; adult duodenum
epithelium) bind more robustly to the maturation-enriched regions rather than to the embryo-enriched regions. The peaks of CDX2 ChlIP in the heatmaps are
aligned to the binding events of HNF4 ChlP. (C) Examples of genes located at maturation-enriched regions are visualized using IGV. Brush border genes, such as
Myo7b and Pls1, are expressed when maturation occurs at E16.5 and are robustly expressed when intestines become mature in the adult (RNA-seq panels,
GSE115541, n=2 biological replicates). These genes are directly bound by CDX2 (GSE34568 and GSE115314, n=2 biological replicates) and HNF4

(GSE112946, n=2 biological replicates per HNF4A and HNF4G ChiP).

CDX2 work to activate maturation-specific gene expression.
Consistent with this idea, genes such as Myo7b and Plsl
(Fig. 3C), which are bound by both HNF4 and CDX2, exhibited
increased transcript expression during tissue maturation. To test
whether HNF4 and CDX2 function is required for chromatin
accessibility at regions that become increasingly accessible in the
fetal stages, we compared the ATAC-seq signal in control and

mutant embryos. Chromatin accessibility was indeed compromised
at maturation-enriched regions from the intestinal epithelium of
both E16.5 Cdx2%° and Hnf4ay® ® embryos (Fig. 4A-E).
Chromatin accessibility loss in these mutants is selective to
maturation-enriched chromatin, as chromatin accessibility at
promoters is unaltered, and serves as an internal control. Taken
together, these data suggest an active role of CDX2 and HNF4
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factors in binding and maintaining accessibility at maturation-
accessible regions.

HNF4 factors thus appear dispensable for tissue specification,
but their expression pattern and control of maturation-enriched
regulatory regions suggest potential roles during later developmental
stages. From E14.5 to E15.5, the pseudostratified intestinal
epithelium resolves to a columnar epithelium and mesenchymal
cells crosstalk with epithelial cells to initiate villus formation (Chin
et al.,, 2017; Walton et al., 2016a; Wells and Spence, 2014). For
example, platelet-derived growth factor receptor alpha (PDGFRa)-
expressing mesenchymal clusters serve as signaling centers for villus
morphogeneis (Walton et al., 2012). We investigated whether villus
morphogenesis is disrupted upon HNF4 loss. At E15.5, Hnf4oy”%°

intestines were similar to their littermate controls (Fig. SA) and there
were no obvious defects in epithelial morphology, mesenchymal
condensations  (PDGFRo-positive  cells) or  proliferation
[bromodeoxyuridine (BrdU)-positive cells] upon HNF4 loss at
E14.5 (Fig. 5B). These results suggest that proliferation and tissue
morphogenesis initiate properly in the absence of HNF4 paralogs.
Consistent with the observation of normal villus morphogenesis
in HNF4 mutants, adult HNF4-bound regions (as defined by ChIP-
seq; Chen et al., 2019) were not very accessible during embryonic
stages, but became markedly more accessible following villus
morphogenesis (Fig. 5C,D). Chromatin accessibility at promoter
regions served as an internal control for each timepoint (Fig. SC,D).
Genes linked to HNF4 ChIP-seq regions also exhibited increased
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Fig. 5. Villus morphogenesis initiates despite the loss of HNF4; chromatin accessibility and gene regulation at HNF4-binding sites suggest a role
for HNF4 after villus morphogenesis. (A) Whole mount images of representative intestines dissected from Hnf4oy<© and littermate Hnf4g*'~ control embryos
at E15.5 (n=4 biological replicates per genotype). (B) H&E staining and immunostaining of PDGFRa and BrdU across developmental time show no striking
differences, indicating that HNF4 factors are dispensable for the onset of villus morphogenesis (representative of four biological replicates). The pregnant
female mice were injected with 1 mg BrdU at 1 h before euthanasia. Scale bars: 50 ym. (C,D) Chromatin becomes accessible during fetal and adult stages at
enhancer regions bound by HNF4 in the adult epithelium (MACS P value <102, GSE112946, n=2 biological replicates per ChiP), indicating a potential role
for HNF4 in activating genes near these regions during intestinal maturation. (E) Increased transcript levels of HNF4-bound genes in intestinal epithelial cells are
observed across developmental time from E12.5 to adult villi. Genes with transcriptional start sites within 20 kb of HNF4 enhancer bound sites (GSE112946, n=2
biological replicates per ChIP) were used for plotting a heatmap showing the relative transcript expression levels over the indicated developmental stages
(GSE115541, n=2 biological replicates per timepoint).
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expression after villus morphogenesis, as the tissue matures (RNA- HNF4 factors are redundantly required for fetal maturation
seq, Fig. SE). Together, these findings suggest that HNF4 probably  of the intestine

functions after villus morphogenesis to drive gene expression during  From E15.5 to E18.5, villi elongate into the lumen and cells that
maturation of the developing fetal gut. leave the intervillus regions exit the cell cycle and begin to express
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markers of differentiation. To appreciate the function of HNF4
factors during this time, we compared ATAC-seq data from E16.5
intestinal epithelial cells isolated from Hnf4ay?%® with data
from control embryos. 5391 accessible chromatin regions lost
accessibility upon HNF4 loss (cluster 2 in Fig. 6A; Table S2). Genes
near these HNF4-dependent regions were associated with mature
intestinal functions, such as adhesion, brush border formation and
lipid metabolism (Fig. 6B; Table S2). For example, chromatin
accessibility increased at regions of the brush border gene Enpep as
the tissue matured (Fig. 6C), and accessibility was almost
completely lost in the Hnf4ay”X© epithelium (Fig. 6D). HNF4
paralogs directly bound to many maturation-specific genes (ChIP-
seq in Fig. 6E and Fig. S2), and transcript levels of these maturation-
specific genes were dramatically reduced in Hnf4ayP%© (Fig. 6F).
Conversely, genes near chromatin regions gaining accessibility
upon HNF4 loss (cluster 3 in Fig. 6A) were associated with cellular
stress (Table S2). Consistent with the loss of expression of
maturation genes, Hnf4ay”XC intestines exhibited a translucent
and distended lumen at E18.5, suggesting an underdeveloped
intestine compared to their littermate controls (Fig. 6G). The gross
morphological defects in intestines were more severe with loss of
three or four Hnf4 alleles compared with loss of one or two Hnf4
alleles (Fig. S3A). After birth, Hnf4ayP%® pups were not able to
survive, whereas Hnf4oX°y"/~ pups survived but exhibited growth
retardation (Fig. S3B,C), which could be the result of incomplete
intestinal maturation. At E18.5, villi were noticeably shorter in
mutants lacking three or four Hnf4 alleles but not in the Hnf4 single
mutants or controls (Fig. 6H; Fig. S3D), suggesting that HNF4
paralogs are redundantly required for villus elongation and
extension into the developing gut lumen. There was no obvious
increase in apoptosis in Hnf4oy”kC, as evaluated by cleaved
caspase 3 staining (Fig. S4A). The differentiation marker, alkaline
phosphatase, which is localized to the apical surface of villus
enterocytes, was normally expressed in the controls beginning at
E15.5 in the maturing tissue and increased over developmental time
(top panels in Fig. 6I). However, alkaline phosphatase was not
detectable in Hnf4 double mutants (bottom panels in Fig. 61). As
expected for genetic redundancy between Hnf4 paralogs, Hnf4
single mutants showed normal expression of alkaline phosphatase
(Fig. S4B). Proliferative cells, which are normally restricted to the
intervillus regions of the fetal gut, were expanded into the villi of
Hnf4ayP%© (Fig. S4C), which could be attributed to the loss of
villus differentiation in mutants lacking HNF4 factors (Fig. 6LJ).
Taken together, our results indicate that HNF4 paralogs are
dispensable for specification and villus morphogenesis in the
developing gut, but are redundantly required for fetal maturation
through direct binding to fetal maturation genes.

DISCUSSION

The regulatory mechanisms governing the transition of embryonic
tissue to mature tissue is a significant frontier for both
developmental biology and regenerative medicine. Chromatin
accessibility dynamics across intestinal development can provide
new insights into the fundamental molecular basis of intestinal
specification and maturation. HNF4 motifs are most prevalent in the
accessible chromatin during the maturation of the developing gut,
and we provide evidence that HNF4 transcription factors are indeed
important for maturation of the fetal intestine. Here, we build a
model in which CDX2 functions in gut specification, then binds to
and activates HNF4 factors in the maturing gut. Together, these
factors are required to mature the fetal tissue, ultimately achieving a
stabilized and mature intestine.

Interestingly, lower-level CDX2 binding in the embryo was
observed at regions that became accessible in fetal stages (Fig. 3A).
Lower-level CDX2 ChIP-seq signal at these poorly accessible
regions could reflect a ‘low-level sampling’” behavior that has
recently been described for the FOXAI transcription factor
(Donaghey et al., 2018). When ectopically expressed in
fibroblasts, FOXA1 exhibits low ChIP-seq signal at binding sites
typically exclusive to other cell lineages, such as liver or endoderm,
a behavior that could relate to the relatively strong interaction of
FOXA1 with chromatin and its slow nuclear mobility compared
with other transcription factors (Sekiya et al., 2009). Low-level
FOXAI1 binding is strengthened at these sites by co-expression of
partner factor GATA4. HNF4 factors could similarly be stabilizing
CDX2 at maturation-specific regions. A potential partner for CDX2
at embryo-specific regions remains elusive. It will be interesting to
test whether CDX2 exhibits similar nuclear mobility as FOXA1. We
also note that although expression levels of HNF4A were markedly
lower in embryonic intestine (Fig. 1E, Fig. S1B), HNF4A motifs
were present at embryo-enriched accessible regions, although at a
lower statistical threshold. These motifs could foreshadow HNF4
binding at later developmental timepoints, reflecting a function for
HNF4A during endoderm development (Fig. 1F), or indicate
another unappreciated role for HNF4 prior to villus morphogenesis.
However, using the Shh-Cre driver in this study, no overt
differences were observed between intestines of control and
Hnf4ayP%© embryos prior to villus morphogenesis.

It is also interesting to note that CDX2 appears to function in both
the embryonic and fetal transcription factor regulatory networks
(Fig. 7). Transitions between regulatory networks could more
seamlessly occur when certain factors are present across the
transition, such as the presence of Sox2 and Esrrb in both
embryonic stem cells and trophoblast stem cells (Adachi et al.,
2013). Rather than shutting down an entire set of transcription
factors and establishing an entirely new set of factors, the common
presence of CDX2 might function as a placeholder to transition
from the embryonic to fetal networks. Inhibitory factors such as
Blimpl (Prdml) have also been shown to play a role in tissue
maturation (Harper et al., 2011; Mould et al., 2015).

Transcription factors and developmental signaling pathways
function in complex and collaborative networks to promote proper
tissue development and function. BMP signals control intestinal
villus patterning (Walton et al., 2016b) and intestinal looping
(Nerurkar et al., 2017), but the functions and mechanisms of BMP
signals in villus maturation are not fully explored. In a recent study,
we identified a reinforcing feed-forward loop of BMP/SMAD
signaling and HNF4, which promotes and stabilizes enterocyte cell
identity in the adult intestine (Chen et al., 2019). Future studies
could also investigate the presence of this reinforcing loop of BMP/
SMAD signaling and HNF4 in the developing gut, and whether it
promotes the maturation of the developing intestine or stabilization
of mature transcription factor networks. These findings would build
on the field’s knowledge of intestinal development and help
influence the efforts of regenerative medicine to provide healthy
intestinal tissue to patient populations.

MATERIALS AND METHODS

Mice

The Shh-Cre transgene (Harfe et al., 2004), Cdx2" (Verzi et al., 2010),
Hnf4a” (Hayhurst et al., 2001) and Hnf4g®sP”/"sP" (Chen et al., 2019)
alleles were bred to achieve the indicated genotypes. The Shh-Cre™ embryos
served as littermate controls unless otherwise indicated. The day on which a
vaginal plug was found was considered to be E0.5. Embryonic tail biopsies
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Fig. 6. HNF4 paralogs are redundantly required for fetal maturation of the intestine. (A) K-means clustering of ATAC-seq data collected from E16.5 intestinal
epithelial cells isolated from Hnf4ay”X© and control embryos identify 5391 regions (cluster 2) that are dependent on HNF4 factors for chromatin accessibility (n=2
biological Hnf4oyPX© replicates and 1 Hnf4g*'~ control in this study; MACS P value <10-5). (B) Functional annotation of the genes linked to HNF4-dependent
accessible chromatin by DAVID. Genes with transcriptional start sites within 20 kb of ATAC-seq sites of cluster 2 (loss of chromatin accessibility upon HNF4
loss) from A were used for analysis. (C-E) Examples of chromatin accessibility at HNF4-dependent ATAC-seq sites are visualized using IGV. (C) ATAC-seq
(GSE115541) shows a time-dependent increase of chromatin accessibility at the locus of the brush border gene Enpep from E11.5 embryo to adult. (D) ATAC-seq
shows compromised chromatin accessibility at the Enpep locus in E16.5 Hnf4ayPX°. (E) RNA-seq (GSE115541) shows corresponding increase in transcript
levels of Enpep over developmental time. HNF4A and HNF4G directly bind to Enpep (GSE112946, ChiP-seq panel), suggesting direct regulation. (F) gPCR
shows that the transcript levels of genes known to be expressed in the mature intestine are dramatically reduced in isolated E18.5 intestinal epithelial cells from
Hnf4ayPKC compared with those from littermate Hnf4g*'~ controls. Data are presented as meanzs.e.m. (n=4 controls and 5 mutants, Student’s t-test, two-sided at
***P<0.001, **P<0.01 and *P<0.05). (G) Whole mount images of E18.5 intestine indicate that loss of HNF4 paralogs leads to an underdeveloped intestine with
distended and translucent lumen (representative of six biological replicates). (H) Strikingly stunted villi are observed in E18.5 Hnf4ayPX® embryos compared with
littermate Hnf4g*'~ controls, as revealed by H&E staining (representative of four biological replicates, E18.5 duodenum; see expanded panel in Fig. S3D).

(1) Hnf4oyPKC exhibits diminished alkaline phosphatase staining (differentiation marker) across developmental time (representative of four biological replicates;
E14.5-E18.5 duodenum). (J) Keratin 20 immunostaining also indicates compromised intestinal differentiation in Hnf4ay®*<° embryos (representative of four
biological replicates; E18.5 duodenum). Scale bars: 50 ym in H,I,J. See Figs S2 and S3 for additional metrics of intestinal maturation.
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were used for rapid genotyping using KAPA Mouse Genotyping Kits (Kapa
Biosystems, KK7352). All mouse protocols and experiments were approved
by the Rutgers Institutional Animal Care and Use Committee. All samples
were collected between 12:00 and 14:00 to avoid circadian variability.

Histology and immunostaining

Intestinal tissues were fixed with 4% paraformaldehyde at 4°C overnight,
washed with PBS and dehydrated through ascending alcohols prior to xylene
processing and paraffin embedding. Paraftin sections (5 um thick) were used for
histological staining. Staining with Hematoxylin (VWR, 95057-858) and Eosin
(Sigma-Aldrich, HT110180) was performed using standard procedures.
Alkaline phosphatase activity was detected using the AP Staining Kit II
(Stemgent). For periodic acid-Schiff (PAS) staining, slides were incubated in
0.5% periodic acid and stained with Schiff’s reagent (Alfa Aesar, J612171). In
the case of tissue prepared for BrdU immunohistochemistry, pregnant female
mice were injected with 1 mg BrdU and embryos harvested 1 h after injection.
Immunohistochemistry was performed using primary antibodies against
HNF4A (Santa Cruz Biotechnology, sc-6556 X, 1:2000), HNF4G (Santa
Cruz Biotechnology, sc-6558 X, 1:2000), ATPase (MBL International D032-3,
1:200), P63 (Santa Cruz Biotechnology, sc-8343, 1:500), BrdU (Bio-Rad
MCA2060, 1:500), Ki67 (Abcam ab16667, 1:300), PDGFRa (Santa Cruz
Biotechnology, sc-338, 1:1000), cleaved caspase 3 (Cell Signaling Technology,
9661, 1:200) and keratin 20 (Cell Signaling Technology, 13063, 1:2500). After
incubating with secondary antibody and the Vectastain ABC HRP Kit (Vector
Labs), slides were developed using 0.05% diaminobenzidine (DAB, Amresco
0430) and 0.015% hydrogen peroxide in 0.1 M Tris. After mounting, the slides
were viewed on a Nikon Eclipse E800 microscope. Images were photographed
with a Retiga 1300 CCD (QImaging) camera using QCapture imaging software.
When adjustments of sharpness, contrast or brightness were made, they were
applied uniformly for comparative images.

Human embryonic stem cell culture and differentiation

All human ESC work was reviewed and approved by the University of
Michigan human pluripotent stem cell research oversight committee
(HPSCRO). The human ESC cell line H9 (WA09, NIH stem registry
#0062) was obtained from the WiCell Research Institute. CDX2¢"%PrKO
human ESCs were generated as described previously (Kumar et al., 2019).
Human ESCs were maintained and differentiated into endoderm, hind/
midgut and human intestinal organoids as previously described (Kumar
et al., 2019; Tsai et al., 2017).

Intestinal epithelial cell isolation

Embryos were collected at E18.5. The freshly harvested embryonic small
intestine (caudal stomach to rostral caecum) was opened longitudinally with
forceps, cut into 1 cm pieces and then rotated in 3 mM EDTA in PBS at 4°C
for 40 min. To release epithelial cells from underlying muscular tissue, the
tissue was vigorously shaken after EDTA incubation. The supernatant was
collected as the whole epithelium fraction. Cells were pelleted by
centrifugation at 170 g at 4°C and then washed with cold PBS and
processed for RNA extraction using Trizol (Invitrogen, 15596018)
according to the manufacturer’s protocols.

RNA extraction and qRT-PCR

The RNA was reverse transcribed using SuperScript III First-Strand
Synthesis SuperMix (Invitrogen, 18080-400) with Oligo(dT),, primers to
prepare cDNA. qRT-PCR analysis was performed using gene-specific
primers and SYBR Green PCR Master Mix (Applied Biosystems,
4309155). The sequences of the primers used are available upon request.
The 2724 method was applied to calculate the fold change of relative
transcript levels; Hprtl was used for normalization.

Intestinal epithelial cell isolation and ATAC-seq

Embryos were collected at E16.5, and the freshly harvested embryonic small
intestine (caudal stomach to rostral caccum) was opened longitudinally with
forceps and cut into 1 cm pieces. Intestinal tissues were treated with
prewarmed 0.25% trypsin for 8 min at 37°C on a vortex station (speed set
between 6 and 7), neutralized with 10% FBS, and passed through a 70 um
cell strainer. Cells were stained with anti-CD326 (EpCAM) magnetic
microbeads antibody (Miltenyi Biotec, 130-105-958) for 40 min on ice. To
obtain single magnetic antibody conjugated EpCAM-positive epithelial
cells, stained cells were passed through a 40 um cell strainer and then
collected over a MS column (Miltenyi Biotec, 130-042-201) in a magnetic
field. Approximately 20,000 cells were used for ATAC-seq, as described
previously (Buenrostro et al., 2013, 2015) with slight modifications. Briefly,
cells were resuspended in ice-cold lysis buffer (10 mM Tris, pH 7.4, 10 mM
NaCl, 3 mM MgCl, and 0.1% NP-40) and then centrifuged at 500 g for
10 min at 4°C. The isolated nuclei were incubated with Nextera Tn5
Transposase (Illumina FC-121-1030) at 37°C for 30 min. The transposed
chromatin was purified with QIAquick PCR Purification Kit (Qiagen); PCR
was amplified with high-fidelity 2X PCR Master Mix (New England
Biolabs M0541). One-third of the maximum fluorescent intensity was used
to determine the additional cycles. The PCR amplified libraries were
purified, fragment size selected using Pippin Prep and sequencing carried
out on [llumina NextSeq 550.

Bioinformatics analysis

For ATAC-seq and ChIP-seq analysis, raw sequencing reads (fastq) were
quality checked using fastQC (v0.11.3) and were further aligned to mouse
(mm9) genomes using bowtie2 (v2.2.6) (Langmead and Salzberg, 2012) to
obtain bam files. Deeptools bamCoverage (Ramirez et al., 2016) (v2.4.2,
duplicate reads ignored, RPKM normalized and extended reads) was used to
generate bigwig files from bam files, and BigWigMerge (v2) was used to
merge the bigwig files of different replicates. MACS (v1.4.1) (Zhang et al.,
2008) was used for peak calling and to generate bed files from bam files.
BEDTools (v2.17.0) (Quinlan, 2014) was used to merge, intersect or
subtract the intervals of bed files. Promoters were defined within 2 kb of the
transcription start sites of RefSeq genes; enhancers were defined by
excluding promoters. Haystack (v0.4.0) (Pinello et al., 2018) quantile
normalized bigwigs were used to create k-means clustering heatmaps of
ATAC-seq using computeMatrix and plotHeatmap from Deeptools (v2.4.2)
(Ramirez et al., 2016). Genomic regions of desired A-means clusters were
extracted from bed files generated by plotHeatmap for further analysis.
Homer findMotifsGenome.pl (v4.8.3, homer de novo Results) (Heinz et al.,
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2010) was used to identify transcription factor motifs enriched at peaks.
Genes associated with peaks were identified using the peak2gene/BETA-
minus function (v1.0.2) in Cistrome tools (Liu et al., 2011). Enriched gene
ontologies were identified from genomic regions (bed file) using GREAT
analysis (v3.0.0) (McLean et al., 2010) or DAVID (v6.8) (Huang da et al.,
2009). SitePro (v1.0.2) (Shin et al., 2009) was used to visualize the average
signals of ChIP-seq in the desired genomic regions. The Integrative
Genomics Viewer (IGV 2.4.13) (Robinson et al., 2011) was used to
visualize bigwig tracks.

For RNA-seq analysis, raw sequencing reads (fastq) were quality checked
using fastQC (v0.11.3) and were further aligned to mouse (mm9) genomes
using Tophat2 (v2.1.0) (Kim et al., 2013) to generate bam files. Kallisto
(v0.44.0) (Bray et al., 2016) was utilized to quantify the transcript
abundances of the RNA-seq samples through pseudoalignment, using
single-end reads and an Ensembl mm9 transcriptome build index. Then, the
tximport (v1.8.0) (Soneson et al., 2015) package was run in R (v3.5.2) to
create gene-level count matrices for use with DESeq2 (v1.20) (Love et al.,
2014) by importing quantification data obtained from Kallisto. DESeq2
was then used to generate RPKM values per kilobase of gene length per
million mapped fragments at each time-course point, with comparison of
Cdx2X0 replicates and wild-type replicates. DESeq2 was also used to
generate P values for gene matches. Genes with FPKM>1, a commonly
used minimal expression threshold, were used for further analysis.
Heatmapper (Babicki et al., 2016) was used to display relative transcript
levels of genes of interest by using normalized RPKM values. IGV
(Robinson et al., 2011) was used to visualize bam tracks.

Statistical analysis

The data are presented as meants.e.m. and statistical comparisons were
performed using the two-sided Student’s #-test at ***P<0.001, **P<0.01 or
*P<0.05. Bioinformatics-related statistical analysis was done with the
embedded statistics in each package, including HOMER (Heinz et al.,
2010), GREAT (McLean et al., 2010), DAVID (Huang da et al., 2009) and
DESeq2 (Love et al.,, 2014). P<0.05 (95% confidence interval) was
considered statistically significant.
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number GSE128674. The following datasets from GEO were reanalyzed. The
accession numbers for the transcriptome and chromatin accessibility of time-course
wild type and Cdx2%© from our previous studies are GSE115314 (Kumaretal., 2019)

and GSE115541 (Banerjee et al., 2018). The accession numbers for the CDX2
ChIP-seq and HNF4 ChIP-seq from our previous studies are GSE34568 (Verzi et al.,
2013), GSE115314 (Kumar et al., 2019) and GSE112946 (Chen et al., 2019).
GSEB89684 (Kazakevych et al., 2017) was used to mark active chromatin with the
time-course H3K27ac ChlP-seq. The accession number for the RNA-seq data of
differentiation of human ESCs into human intestinal organoids is E-MTAB-4168
(Tsai et al., 2017) in the ArrayExpress database. Data curated from public sources
are also listed in Table S3.
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Fig. S1. HNF4 expression in the intestinal epithelium across developmental time. (A)
HOMER de novo analysis of ATAC-seq (GSE115541, n = 2 biological replicates per
timepoint, MACS P value < 10°) of mouse intestinal epithelial cells at each
developmental time shows that CDX2 binding motifs are present as early as E11.5,
whereas HNF4 binding motifs are not present until E14.5 (E11.5, E14.5 and E16.5: small
intestinal epithelial cells; Adult: adult villus epithelial cells). HNF4 motifs are
increasingly abundant at accessible regions as the intestine matures. Immunostaining of
(B) HNF4A and (C) HNF4G shows that relative protein levels of these factors increase
with developmental time in mouse (representative of 4 biological replicates, duodenum).
(D) Schematic of human intestinal organoids differentiated from hESCs (Tsai et al.,
2017). (E) HNF4A and HNF4G immunostaining shows loss of HNF4 in the E18.5
intestinal epithelium of both single and double mutants (representative of 4 biological
replicates, E18.5 duodenum). (F) Immunostaining of HNF4A shows loss of HNF4A in
the intestinal epithelium of E14.5 Shh-Cre* embryos (representative of 4 biological
replicates, duodenum). Scale bars, 50 um.
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Fig. S2. HNF4 paralogs bind to and activate maturation-specific genes. Maturation-
specific genes, such as (A) Vill, (B) Alpi and (C) Slc5al, show more accessible
chromatin (ATAC-seq, left panels) and increased transcript levels (RNA-seq, right top
panels) across developmental time, and HNF4 factors bind to the maturation-specific
genes in the mature tissue of the adult (ChIP-seq, right bottom panels). n = 2 biological
replicates per developmental timepoint for ATAC-seq (GSE115541), RNA-seq
(GSE115541) and ChlP-seq (GSE112946).
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Fig. S3. Loss of 3 HNnf4 alleles in the developing gut leads to growth retardation after
birth. (A) Loss of 3 or 4 Hnf4 alleles in developing embryos leads to an underdeveloped
intestine with distended and translucent lumen (representative of 4 biological replicates).
(B) Hnf4aX/*'" pups can survive after birth but show slower growth when compared to
littermate controls. (C) Body weight of P14 pups. Data are presented as mean + SEM
(Hnf4y*" controls: n = 16; Hnf4a®/*"- mutants: n = 10; Student’s t-test, two-sided at P <
0.001***), (D) Hnf4 single mutants have a similar morphology to the controls, but loss of
3 or 4 Hnf4 alleles in developing embryos leads to strikingly stunted villi, as evidenced by
H&E staining (representative of 4 biological replicates, E18.5 duodenum; expanded panel
from Fig.6H). Scale bars, 50 um.
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Supplementary Fig. 4
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Fig. S4. Additional histological and immunochemical features of HNF4 mutant
intestines. (A) HNF4 mutants do not have significant cell death as shown in
immunostaining of cleaved caspase 3 (representative of 4 biological replicates, E18.5
duodenum). (B) Hnf4aX® and Hnf4/X° embryos do not have compromised intestinal
maturation, as evidenced by alkaline phosphatase staining, indicating redundant roles
for HNF4 factors in intestinal development (representative of 4 biological replicates,
E18.5 duodenum). (C) Proliferative cells (Ki67") are observed in the villi of Hnf4yaPK®,
which may be due to compromised tissue maturation (representative of 4 biological
replicates, E18.5 duodenum). Scale bars, 50 pm.
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Supplementary information

Table S1. Genome coordinates for ATAC-seq performed in intestinal epithelial cells from E11.5 embryo to
adult, including 30,702 embryonic enhancer regions (cluster 3 from Fig.1A) and 10,544 maturation
enhancer regions (cluster 2 from Fig.1A). Additionally, the full list of HOMER de novo motif-calling
analysis on these embryonic and maturation-enriched regions are reported respectively. Finally, the results
of GO term enrichment using GREAT analysis for genes with their transcriptional start sites within 20 kb
of these embryonic and maturation regions are reported respectively. These data correspond to findings in
Fig.1.

Click here to Download Table S1

Table S2. ATAC-seq performed in intestinal epithelial cells from E16.5 Hnf4a”X? versus Hnf4 "
controls. Genome coordinates for 5,391 accessible chromatin regions become inaccessible upon HNF4 loss
(cluster 2 from Fig.6A). Additionally, the full list of HOMER de novo motif-calling analysis on these
HNF4 chromatin-dependent regions are reported. Finally, the results of GO term enrichment using DAVID
analysis for genes with their transcriptional start sites within 20 kb of these HNF4 chromatin-dependent
regions are reported. GO and motif analysis of regions from cluster 3 of Fig.6A are also included. These
data correspond to findings in Fig.6.

Click here to Download Table S2

Table S3. Details of sequencing data sets used in this study.

Click here to Download Table S3
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