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ABSTRACT

Studies in evolutionary and developmental biology show that
relationships between transcription factors (TFs) and their target
genes can be altered to result in novel regulatory relationships that
generate phenotypic plasticity. We hypothesized that context-
dependent shifts in the nervous system associated with behavior
may also be linked to changes in TF—target relationships over
physiological time scales. We tested this hypothesis using honey
bee (Apis mellifera) division of labor as a model system by performing
bioinformatic analyses of previously published brain transcriptomic
profiles together with new RNAi and behavioral experiments. The
bioinformatic analyses identified five TFs that exhibited strong
signatures of regulatory plasticity as a function of division of labor.
RNAI targeting of one of these TFs (broad complex) and a related TF
that did not exhibit plasticity ( fushi tarazu transcription factor 1) was
administered in conjunction with automated analyses of foraging
behavior in the field, laboratory assays of aggression and brood care
behavior, and endocrine treatments. The results showed that changes
in the regulatory relationships of these TFs were associated with
behavioral state, social context and endocrine state. These findings
provide the first empirical evidence that TF—target relationships in the
brain are altered in conjunction with behavior and social context. They
also suggest that one mechanism for this plasticity involves pleiotropic
TFs high up in regulatory hierarchies producing behavior-specific
transcriptional responses by activating different downstream TFs to
induce discrete context-dependent transcriptional cascades. These
findings provide new insights into the dynamic nature of the
transcriptional regulatory architecture underlying behavior in the brain.

KEY WORDS: Social insects, Behavioral endocrinology, Gene
regulatory networks, Social behavior, Transcriptomic plasticity

INTRODUCTION
A strong reciprocal relationship exists between behavioral plasticity
and changes in brain gene expression (Cardoso et al., 2015; Zayed
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and Robinson, 2012), yet the regulatory mechanisms connecting the
two are not well understood. Shifts in the expression of specific
transcription factors (TFs) can initiate and maintain changes in brain
transcriptomic state and lead to corresponding alterations in behavior
(Zayed and Robinson, 2012), implicating the involvement of brain
transcriptional regulatory networks (TRN$) in the regulation of neural
and behavioral state. Although it is well known that TFs influence
behavior, it is not yet known whether the functional connections
between TF and target genes represented in brain TRNs change
quantitatively (i.e. changes in connection strength) or qualitatively
(i.e. shifts in the polarity or addition/loss of connections) to give rise
to transcriptional regulatory plasticity in association with different
behavioral states.

Transcriptional regulatory plasticity (or ‘rewiring’) has been
clearly demonstrated at evolutionary time scales, mediated by the
addition or removal of TF binding sites in promoter and enhancer
regions (Sorrells and Johnson, 2015). In addition, the relationship
between TFs and target genes during development can be transiently
influenced by epigenetic factors that affect the accessibility of TF
binding sites (Araya et al., 2014) or changes in the expression of
cofactors and partner TFs that influence the affinity of a TF for
specific regulatory sequences (Sorrells and Johnson, 2015). These
forms of transcriptional regulatory plasticity have been observed, for
example, in the establishment of cell identity leading to cell type-
specific patterns of TF—target gene expression (Araya et al., 2014;
Lorberbaum et al., 2016).

We hypothesized that context-dependent shifts in nervous system
function associated with behavior may also be linked to changes in
TF—target relationships over physiological time scales. It is now
known that many of the processes that induce regulatory plasticity
during development are capable of acting in terminally differentiated
cells such as neurons (Sweatt, 2013) at relatively short time scales
(Meadows et al., 2016). This suggests that transcriptional regulatory
plasticity may also occur in the context of behavior, but it is not yet
known whether this is the case.

The nervous system is highly dynamic; the strength of synaptic
connections can shift within seconds of neurotransmitter release,
and dramatic changes in neural connectivity have been reported in
the context of behavior in many organisms, including the honey bee
(Fahrbach et al., 1998). Thus, although transcriptional regulatory
plasticity has been demonstrated in other contexts, it is not known
whether it also can occur on the faster time scales associated with
neural and behavioral plasticity. Further, determining whether
transcriptional regulatory plasticity in the brain is linked to social
behavior is critical for understanding how the nervous system
generates adaptive behavioral responses to complex social stimuli.

Social insects such as honey bees are excellent models to study the
mechanisms underlying transcriptomic and behavioral plasticity.
Colonies of the Western honey bee (Apis mellifera) exhibit a division
of'labor that is based on the highly stereotyped behavioral maturation
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of the worker bees, which perform different tasks necessary for their
colony’s growth and development as they age. During the first
approximately 3 weeks of adult life, a worker bee specializes for
several days on brood care and other in-hive tasks. Later, it switches to
nest defense and/or foraging for nectar and pollen for the remainder of
its 5—7 week life. In addition, bees are able to speed up, slow down or
reverse behavioral maturation in response to the needs of their colony.
The duration of their stable and relatively long-term behavioral states
thus results from a complex interplay of genotypic, endocrine,
neurochemical, developmental, social and abiotic factors during
development and adulthood (Robinson, 1992). The fact that these
strong behavioral states are reliably associated with large-scale
changes in brain gene expression (Zayed and Robinson, 2012) makes
honey bees particularly useful for this study.

A honey bee brain TRN was previously modeled based on
extensive brain transcriptomic data that encompassed multiple
behaviors and social contexts (Chandrasekaran et al., 2011).
Computational inferences from this TRN unexpectedly implicated
the possibility of transcriptional regulatory plasticity as a function of
behavior. To investigate the concept of transcriptional regulatory
plasticity in the context of the brain and social behavior, we performed
the following analyses. We first used bioinformatic analyses of the
previously published brain transcriptome data (Chandrasekaran et al.,
2011) to test whether individual TFs exhibit signatures of regulatory
plasticity in the adult bee. We then performed experimental tests by
perturbing two TFs identified by the bioinformatic analyses with RNA
interference (RNAi) and endocrine treatments. We determined the
effects of these perturbations on brain gene expression, behavior and
transcriptional regulatory plasticity using field and laboratory assays
for behavioral maturation (age at onset of foraging and brood care),
and a laboratory assay for hive defense (aggression toward a foreign
bee paired with exposure to alarm pheromone). We also explored the
idea that pleiotropic TFs can regulate discrete behavioral states by
recruiting downstream regulators with more specific functions.

MATERIALS AND METHODS

Bioinformatic analysis for signatures of brain transcriptional
regulatory plasticity

Bioinformatic analyses were conducted on transcriptomic results
from our previously published studies (Alaux et al., 2009;
Chandrasekaran et al., 2011), which used custom honey bee
microarrays (Array Express accession numbers E-TABM-604,
E-TABM-605, E-TABM-606 and E-TABM-607). These
experiments assessed the interaction between genotype and
environmental factors using cross-fostered bees in three different
behavioral categories: aggressive bees (soldiers, guards and
responders to alarm pheromone), foragers and hive bees (4 day old
bees that were not assayed for behavior but were most likely
performing brood care and related tasks within the colony; Seeley,
1982). Although the experiments of Alaux et al. (2009) were not
designed to assay transcriptomic differences between aggressive
bees, foragers and hive bees, they were performed by the same
individual, used bees of the same genotypes and colonies of origin,
and were performed during the same 3 month period, thereby
minimizing the impact of many variables that could interfere with our
assessment.

To further ensure that the effect of these variables on brain gene
expression was minimized, we processed mean-centered expression
values from the microarrays using RUVcorr (Freytag et al., 2015),
an implementation of the Remove Unwanted Variation (RUV)
algorithm (Gagnon-Bartsch and Speed, 2012) that is designed
for use in gene co-expression analyses (File S1, figshare). This

algorithm uses internal reference genes that are unlikely to vary
across experimental conditions to correct for technical variability in
microarray data. We used a set of 1000 probes identified as having
the lowest variability across all samples (excluding the genes
previously identified as putative targets for the TFs in question).
Ridge Regression (Freytag et al., 2015) was then performed to
adjust the expression of the remaining genes (Fig. S1A,B), and these
values were used in downstream analyses (File S1, figshare).

We modeled changes in putative TF—target relationships (first
identified in a honey bee brain TRN; Chandrasekaran et al., 2011)
across the behavioral categories using analysis of covariance
(ANCOVA). TF expression was treated as a continuous linear
predictor of putative target gene expression, and the behavioral
category was assessed as a discrete variable. A significant interaction
term (false discovery rate, FDR<0.1) between these two variables
indicates a change in the regulatory relationship between the TF and
putative target genes between categories, i.e. it is ‘context dependent’
(see Fig. 1A for one TF—target gene example). The assumption of a
linear relationship between a TF and its target genes is an
oversimplification, as genes are regulated by multiple TFs and
cofactors. However, linear techniques, together with algorithms
designed to ensure that only direct TF—target relationships were
inferred, were previously used by Chandrasekaran et al. (2011) to
accurately predict TF—target gene relationships for about 25% of the
genes expressed in the honey bee brain. This implies that the
assumption of linearity also can be used as a heuristic tool to probe
transcriptional regulatory plasticity.

We performed these analyses on 20 TFs (Table 1) that were
previously predicted to be major regulators of the honey bee brain
transcriptome; combined, they were predicted to regulate ca. 75%
of the genes in the honey bee brain TRN (Chandrasekaran et al.,
2011). Although we corrected for technical variation in the
microarray data as detailed above, we cannot fully rule out
the possibility that some individual instances of plasticity between
the TFs and their putative targets might be false positives. We
therefore related TF expression (File S2, figshare) to a subset of
microarray probes that we curated to consist of both the TFs’
putative targets and the transcriptomic background (the rest of the
microarray probes; 9544 probes in total; Files S2—S4, figshare)
from the microarrays used in the original experiments reported
in Chandrasekaran et al. (2011). PCA plots based on the
putative target and background genes exhibited similar sample
distributions, suggesting neither set of genes was biased by
technical variation (Fig. S1C,D), and that group-wide comparisons
between them should be a valid method to detect whether a TF
demonstrated a signature of transcriptional regulatory plasticity.

Signatures of transcriptional regulatory plasticity were inferred
for each pair of categories (aggressive bees, foragers and hive bees)
by comparing the proportion of putative target genes (Files S3
and S4, figshare) identified in Chandrasekaran et al. (2011) with
significant (FDR<0.10) differences in expression for the pairwise
contrast with the proportion of the remaining probes (i.e. the
transcriptomic background) for the same contrast (one-sided
Fisher’s exact test, FDR<0.05). Only if at least 15% of a TF’s
putative target genes exhibited a significant contrast between the
relevant pair of behavioral categories was it considered for this
analysis. Two TFs (Broad and NF-kB) were represented by multiple
probes on the array. To account for this, the analysis was run
independently for each individual TF probe, and significant effects
were compiled across the putative target gene and background sets
for Fisher’s exact test. We also determined the effect size for each
comparison by comparing the odds ratio (OR), calculated by
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Fig. 1. ANCOVA analyses of transcriptomic data reveal

0.8+ A signatures of brain transcriptional regulatory plasticity
A Aggressive bees . as a function of behavioral state. (A) Shifts in the
¥ Foragers relationship between a transcription factor (TF) and a
@ Hive bees 4 representative putative target gene across the three
7 o A behavioral categories are represented by linear regression.
Shaded areas represent the 95% confidence intervals.
0.4 (B) Proportion of putative target genes (Broad: n=169, YI-1:
n=84, Creb: n=185, Trl: n=131 and MTA1-like: n=154)
c exhibiting transcriptional regulatory plasticity for five TFs that
.% exhibit signatures of plasticity. Data from a total of three
2 experiments (Alaux et al., 2009; Chandrasekaran et al.,
s 2011) were used for this analysis with the number of
3 0 individual brain transcriptomic profiles as follows: n=118
3 aggressive bees, n=40 foragers and n=20 hive bees. False
8 discovery rate (FDR) values for TFs that exhibited a
Q signature of regulatory plasticity (see Materials and
o Methods) across the given categories are indicated by
asterisks: *FDR<0.05, **FDR<0.01.
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dividing the proportion of putative target genes with significant
TFxcategory interaction effects by the proportion of the
transcriptomic background that had significant interaction effects.

Animals used in behavioral and RNAi experiments

All experiments took place at the University of Illinois Bee Research
Facility, Urbana, IL, USA, between the months of June and October
in 2013 and 2014. To minimize the effects of genetic variation on
behavior and molecular analyses, all experiments used adult worker
bees, Apis mellifera Linnaeus 1758, from colonies headed by queens
each instrumentally inseminated with semen from a single drone;
because of haplodiploidy, this results in an average coefficient of
relatedness of 0.75. Honeycomb frames containing pupae were
removed from colonies 1—4 days prior to the beginning of each
experiment and maintained in a dark incubator at 34°C and 50%
relative humidity. Adult workers 0-24 h old were obtained from
these frames, placed into Plexiglas cages in groups of 50, and fed
50% (w/v) sucrose solution and pollen paste (45% honey/45%
pollen/10% water) ad libitum. The bees were kept in these cages in
the incubator for 4 days prior to RNAI treatment, and an additional

2 days post-treatment (except for the bees used in the foraging
experiments, see below).

TFs chosen for manipulation

We focused on the transcription factor Broad to experimentally test
for a direct connection between network plasticity and behavior, for
four reasons. First, Broad was one of only two TFs to exhibit a
signature of plasticity between more than one pair of behavioral
categories in the bioinformatic analysis described above (see Results).
Second, Broad is known to be a pleiotropic integrator of diverse
endocrine cascades in multiple insect species (Bonneton and Laudet,
2012). It mediates insulin, juvenile hormone (JH) and vitellogenin
(Bonneton and Laudet, 2012; Hamilton et al., 2017) signaling, all of
which are known to play a causal role in honey bee behavioral
maturation (Hamilton et al., 2017; Zayed and Robinson, 2012). Third,
Broad also has consistently been predicted to be an important
regulator of honey bee behavior in studies employing diverse
bioinformatic methods, and its predicted targets are associated with
neuronal function and activity (Ament et al., 2012a; Chandrasekaran
et al, 2011). Fourth, an increase in the number of Broad
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Table 1. ANCOVA across behavioral categories reveals signatures of transcriptional regulatory plasticity

Aggressive bees versus

Aggressive bees versus Foragers versus hive

Main effect foragers hive bees bees
No. of Proportion Odds Proportion Odds Proportion Odds Proportion Odds

TF putative targets of targets ratio of targets ratio of targets ratio of targets ratio
Broad 169 0.16568 0.89013  DMA1420 157300 047357 N 88781 0. 10650 0.67394
Ftz-F1 146 0.28082 3.97821 0.00000 0.00000 0.02740 0.94870 0.00685 0.99024
Lag1 394 0.33503 2.18890 0.00000 0.00000 0.04822 0.71309 0.05076 0.81409
CG9932 265 0.06415 3.44560 M0.0M% 0.78983 0.00755 0.52294
Creb 185 0.41622 2.81379 0.09189 0.80075 0.07027 0.91374
CG17912 181 0.97238 98.17823 0.04972 2.04137 0.01657 0.17373 0.02210 0.27128
Rotund 162 0.14198 1.39789 0.00617 1.87357 0.01852 2.66324 0.00617 0.67139
Myb 154 0.07792 1.23583 ii iii iﬁi ii iiiii 0.01299 1.22237 0.01948 0.82812
MTA1-like 146 0.23973 1.81046 0.01370 1.68128 0.00000 0.00000
NF-xB 134 0.31372 2.14845 0.13559 0.99957 0.02290 3.34422 0.00751 2.20347
Bunched 133 0.28682 2.32977 0.12403 0.97960 0.00000 0.00000 0.00000 0.00000
Combgap 131 0.00763 0.88623 0.07634 1.08894 M0.00000 0.00000
Trl 131 0.28244 2.73570 0.00763 0.28546 0.12977 2.14449
CG9776 108 0.04630 1.55306 0.26852 0.78637 0.07407 0.48972 0.00926 1.13594
CG7786 98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01020 10.80985
CG6769 97 0.65979 4.84633 0.14433 1.31225 0.07216 2.19002 0.05155 2.24800
Su(var)2-10 94 0.40426 8.20301 0.13830 1.36533 0.01064 0.23292 0.02128 0.56522
Fox-P2 94 0.20213 2.95578 0.04255 1.82222 W
YI-1 84 0.83333 11.67842 0.11905 1.19236

Su(Hw) 80 0.38750 2.49231 0.16250 2.13040 0.18750 1.32368 0.06250 0.81085

TF, transcription factor. Dark grey shading indicates a signature of transcriptional regulatory plasticity. Light grey shading indicates a non-significant main effect.

cis-regulatory elements across the genome has previously been linked
to the evolution of social behavior in multiple species of bees
(Kapheim et al., 2015), implying that its regulatory relationships have
been ‘rewired’ over evolutionary time scales.

We also targeted a TF related to Broad that did not exhibit a strong
signature of transcriptional regulatory plasticity (see Results), to
complement and contrast with Broad: Fushi tarazu transcription
factor 1 (Ftz-F1). Ftz-F1 is a downstream target of Broad in highly
conserved endocrine cascades that are critical to insect development
(Bonneton and Laudet, 2012) and, like Broad, it is predicted to be a
key regulator of several behaviors in honey bees (Ament et al.,
2012a; Chandrasekaran et al., 2011; Faragalla et al., 2018).
Additionally, like Broad, Ftz-F1’s putative targets are enriched for
gene ontology terms related to neuronal plasticity, cognition and
learning and memory (Chandrasekaran et al., 2011).

RNAi-nanoparticle complexes

Dicer-substrate (Integrated DNA Technologies, Coralville, IA,
USA) RNAI constructs (D-siRNA) were designed against exons
shared between all predicted isoforms of broad complex or fushi
tarazu transcription factor 1 (fiz-f1). A cocktail of three such
constructs (Table S1) in equivalent concentrations was used to
target each gene. Perfluorocarbon nanoparticles were fabricated as
previously described (Kaneda et al., 2010). To create nanoparticle—
D-siRNA complexes, 1 umol 17! of the D-siRNA cocktail or an
exogenous control (targeted to green fluorescent protein, gfp) and
2 nmol 1=! nanoparticles were combined in 1x phosphate buffered
saline (Sigma-Aldrich, St Louis, MO, USA). This solution was
incubated at room temperature for 30 min with light agitation before
use. These nanoparticles have been used previously to successfully
administer siRNA to honey bees (Li-Byarlay et al., 2013).

In the 2013 experiments, 20% high molecular weight dextran
(Sigma-Aldrich) was added to the nanoparticle complexes post-
incubation to increase the viscosity of the solution and prevent it
from diffusing away from the head capsule during injection.
However, dextran use resulted in a substantially higher mortality, so
this practice was discontinued in 2014.

Injections

‘We manipulated Broad and Ftz-F1 expression by applying broad and
fiz-fl RNAI to the brain via direct injection, a method that has
previously been shown to reduce gene expression in the honey bee
brain (Farooqui et al., 2003; Rein et al., 2013). Bees were cold-
anesthetized and mounted on a Plasticine (Flair Leisure Products PLC,
Cheam, UK) pedestal; dental floss was used to stabilize the head.
Pedestals were placed in a tray of dry ice to ensure that the bees did not
wake prior to the end of the injection. Prior to injection, two paint
marks (Testors, Rockford, IL, USA) were applied to the individual’s
thorax and a preliminary incision was made to the posterior part of the
median ocellus using a 28-gauge needle. A 34-gauge Nanofil needle
(World Precision Instruments, Sarasota, FL, USA) was inserted
500 um into the incision, and 500 nl of nanoparticle complexes was
administered using a UMP3 Microinjector run by a Micro4 controller
(World Precision Instruments) at a rate of 5 nl s~!. Bees that exhibited
backflow of the injection mixture were discarded. After injection, bees
were kept anesthetized for ca. 10 min before being returned to their
cages to prevent the injected solution from circulating away from the
brain. Mortality as a result of the injections was ca. 15-20%, with no
statistically significant differences as a function of treatment type
(Kruskal-Wallis test; Fig. S2). The efficacy of these injections,
measured with qPCR on broad and fiz-fI expression resulted
in significant knockdowns of 17-37% in 80% of the trials (Table 2;
Fig. S3).

JH analog administration

Broad and Ftz-F1 mediate the transcription-dependent effects of JH
on cell physiology during development in other insect species
(Bonneton and Laudet, 2012) and (at least in the case of Ftz-F1) in
pharate adult bees (Mello et al., 2018). JH plays a strong role in
regulating honey bee behavioral maturation (Robinson, 1992). We
co-administered RNAi and the JH analog methoprene (JHA) and
observed effects on brood care behavior. Methoprene was used
instead of JH-III because of its longer half-life and the fact that it is
known to induce many of the same transcriptional changes as
behavioral maturation (Whitfield et al., 2006). In 2014, bees in half
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Table 2. Aggression and brood care experiments by year

Experiment Year RNAI Colony Knockdown JHA effect on RNAI RNAi effect on behavior JHA effect on behavior
Aggression 2013 broad 1 -N/A _N/A
2 N/A N/A
3 N/A NS (n=30) N/A
ftz-f1 1 N/A NS (n=28) N/A
2 N/A NS (n=29) N/A
3 N/A NS (n=29)
2014 broad 1 N/A
2 N/A
3 N/A
Brood care 2014 broad 1
2
3 N/A N/A
ftz-f1 1 NS (n=29) NS (n=21) NS (n=38) NS (n=40)
2
3 N/A N/A

Dark grey shading indicates a significant effect of the given treatment. Light grey shading indicates a non-significant effect.

of the cages were administered methoprene using a method adapted
from established protocols (Ament et al., 2012b). Methoprene was
mixed with the pollen paste (20 mg g~") until the day prior to RNAi
treatment, at which point it was replaced with standard pollen paste.
After RNAI treatment, methoprene-treated bees and control diet
bees were combined in the same cage and co-housed for the
remainder of the experiment. Previous research has shown that
similar doses of methoprene cause precocious foraging and forager-
like gene expression patterns involving hundreds of genes in both
the brain (Whitfield et al., 2006) and fat bodies (Ament et al.,
2012b).

Behavioral maturation: precocious foraging

Single-cohort colonies initially composed of ca. 2000, 1 day old
worker bees were established according to previous protocols
(Tenczar et al., 2014). Each colony was given two honeycomb
frames of honey, one frame of pollen, one empty frame and a mated
queen unrelated to the worker bees. Each colony was formed 2 days
prior to the eclosion of the treated bees. Instead of being housed in an
incubator, Plexiglas cages containing these bees (provisioned as
noted previously and given a piece of comb from the parent colony)
were housed within the colony prior to RNAI treatment. Immediately
after RNAI treatment, treated and control bees were each tagged with
a pair of RFID (p-chip) transponders (Pharmaseq, Princeton, NJ,
USA) (Tenczar et al., 2014). The bees were then returned to their
cages and placed within the colony until their release 12 h
later. Together with the presence of common pieces of comb, the
co-housing procedure ensured that the other bees in the colony were
not aggressive toward the treated bees. Up to three cohorts of bees
were added to each colony on consecutive days. The flight activity of
the treated and control bees was continuously monitored by a pair of
barcode readers (Pharmaseq) mounted at the hive entrance that
captured all outgoing and incoming trips (Tenczar et al., 2014). Data
were collected continuously for 10 days post-RNAi treatment, and
age at onset of foraging information was extracted as described
previously (Tenczar et al., 2014) and summarized below.

Aggression assays

Two days after RNAi treatment, bees were transferred to Petri dishes
(100x20 mm) provisioned with honey, water, a pollen ball and a
piece of wax comb from their original cage. In 2013, groups of six
individuals (three control RNAi and three treatment RNAi) were

used; in 2014, groups of eight individuals were used, consisting of
two bees from each JHAXRNAI treatment combination, yielding a
2x2 factorial. Each group member was marked uniquely to enable
behavioral analyses at the individual level. The bees were then
placed in a climate-controlled testing room (28°C) with normal
fluorescent lighting and allowed to acclimate for at least 60 min
prior to testing.

Aggression assays were adapted from a previously developed
intruder assay (Rittschof et al., 2014). An intruder collected from the
entrance of an unrelated colony immediately prior to the assay was
introduced to a dish of bees. The bees were observed for 5 min, after
which the intruder was removed from the dish, regardless of whether
it was still alive. The bees were then exposed to 5 ul of isopentyl
acetate (Sigma-Aldrich), the active ingredient in honey bee alarm
pheromone, diluted 1:10 with mineral oil as described previously
(Alaux et al., 2009). This additional treatment was added to simulate
a high-level threat to the group, even if none of the residents
responded to the intruder in an aggressive manner. Previous studies
have shown that this intruder assay produces behavior that is
consistent with aggressive defense behavior in colonies in the field
(Rittschof et al., 2014).

In 2013, treatment and control bees were collected 1 h after the
presentation of the stimulus by flash-freezing them in liquid
nitrogen. Unexposed control groups served as a baseline for gene
expression assays. These groups were acclimated to the same
chamber and collected during the same time frame, but were not
administered an intruder, isopentyl acetate or control stimulus. In
2014, bees were instead collected either immediately after the end of
the assay (before the assay could elicit changes in transcription) or
60—120 min later. Those groups collected immediately after the end
of the assay served as the baseline for gene expression studies.

Behavioral maturation: brood care assays

Brood care assays were performed as described previously (Shpigler
and Robinson, 2015). A waxen naturally built cell containing a 3 or
4 day old queen larva was introduced into a Petri dish of bees, and
the interactions between the residents and the queen were scan-
sampled at 10 s intervals. The queen cell was removed after 10 min
of observation. Control dishes were each given an empty queen cell
to determine whether the RN A treatment caused any differences in
general sensitivity to stimuli. Previous studies have shown that this
assay produces behavior that is consistent with brood care behavior
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in colonies in the field (Shpigler and Robinson, 2015). Collections
followed the same protocol as the aggression assays performed in
2014, described above.

Sample preparation and quantitative PCR

Sample preparation and quantitative PCR (qPCR) were performed
using established protocols (Ament et al., 2011). Whole brains were
dissected into RNA-later ICE (Thermo Fisher Scientific, Waltham,
MA, USA) at —80°C, homogenized and extracted using RNeasy spin
columns (Qiagen, Valencia, CA, USA) with DNase treatment
(Invitrogen, Carlsbad, CA, USA). RNA was quantified using a
Nanodrop spectrometer (Thermo Fisher Scientific) and Qubit
fluorimeter (Thermo Fisher Scientific), and cDNA syntheses were
performed using Arrayscript (Thermo Fisher Scientific) reverse
transcriptase. An exogenous RNA spike-in (Root Cap Protein 1 from
Arabidopsis thaliana) was used to assess cDNA synthesis efficiency.
qPCR was performed using SYBR Green dye (Thermo Fisher
Scientific) on an ABI Prism 7900ht (for samples analyzed in 2013) or
ABI QuantStudio 6 (for samples analyzed in 2014). Sample—probe
combinations with an inter-triplicate coefficient of variation (CV)
higher than 30% were discarded. For qPCR probes, see Table S1.

Observation and analysis of age at onset of foraging

The age at onset of foraging was determined with an algorithm that
relates the proportion of RFID p-chip reads during peak foraging
hours to the proportion during the time when pre-foraging orientation
flights are likely to occur (Tenczar et al.,, 2014). Foragers were
classified as bees with more than eight reads for at least 2 consecutive
days, with greater than half of their reads collected during peak
foraging hours (12:00 h—15:00 h central standard time) (File S5,
figshare). A previous study using similar, but less stringent,
thresholds found an excellent correspondence between this metric
and human observations (Tenczar et al., 2014). Up to three cohorts of
bees were treated with RNAi and/or JHA on consecutive days and
added to each background colony. The age at onset of foraging data
were analyzed with a Cox Proportional Hazards (coxph in R; File S1,
figshare) model (Ben-Shahar et al., 2002), stratified by the colony the
bees were added to and the cohort they belonged to within this
colony. Bees that died before the end of the experiment and did not
become foragers were removed from the analysis, as the time of their
death could not be accurately determined.

Observation and analysis of aggression and brood care
behavior

Behavioral data from the aggression assay were scored using an
index adapted from Rittschof et al. (2014). Bees were assayed using
an approach that involves scan sampling for 5 min, with an observer
blind to treatment noting all interactions between residents and the
intruder during consecutive 10 s scans (Table 3). In addition, these
values were summed for each 10s window that an individual
resident interacted with the intruder, and the total score for each bee
was normalized by the duration of the potential interaction time (i.e.
if a resident or intruder died prior to the end of the assay, additional
bins would not be factored into the normalized score; File S5,
figshare). The average score for each treatment group of bees was
used as the experimental unit, with individual bees regarded as
subsamples. Because of the invasive nature of the RNAIi treatments
and the potential for treatment-related injuries to interfere with
normal behavior, individuals that did not respond to the intruder
(30% across all assays, with no significant difference between
treatments) were not scored and were discarded from the study.
Brood care behavior was measured and scored in the same manner

Table 3. Behavioral indexes

Index Behavior

Aggression

0 Investigative/prosocial behaviors (antennation and trophallaxis)

1 Threat displays (antennation with mandible opening, defensive
posturing, lunging)

2 Biting, grappling, chasing

3 Grappling with abdominal flexion

4 Stinger eversion

Brood care

1 Antennation of the queen cup or physical contact with the
queen cup

2 Antennation of the queen cup opening or antennation combined
with physical contact

3 Head enters the queen cup

4 Thorax enters the queen cup

5 Brood care

as aggression, using a behavioral index adapted from Shpigler and
Robinson (2015) (Table 3; File S5, figshare).

The distribution of aggression and brood care scores across
samples deviated significantly from normality, so a Box—Cox
transformation was applied as a correction. Post-transformation, all
data from 2013 met requirements of normality and homoscedasticity.
Behavioral data from 2014 met all assumptions post-transformation,
except for skewness and, in some instances, kurtosis (likely due to the
lower number of pseudoreplicates in each sample); however, mixed
models have been shown to be robust to violations of skewness and
kurtosis when total sample sizes larger than 45 are used (Arnau et al.,
2013). Therefore, we analyzed the transformed data using a linear
mixed effects model (the Ime4 package in R; Bates et al., 2015) with
Type III Sums of Squares and the Kenward—Roger approximation of
degrees of freedom (reported to the nearest degree of freedom;
File S1, figshare). To account for group-wise differences in variables
such as the stimulus presented (which cannot be easily quantified or
controlled for across groups), we included a random variable that
accounted for the dish that each set of bees belonged to (nested within
the date of testing and the bees’ colony of origin). We also initially
blocked for the experimental observer and included the time of testing
as a linear covariate. However, the influence of observer and the time
of testing were not found to be significant, so these variables were
removed from the final model.

The effects of the RNAI (broad and fiz-f1 RNAi) were analyzed
independently, as the injections were performed on distinct sets of
bees. In 2014, JHA treatment was added as a response variable of
interest, and the interaction between JHA and broad|/fiz-f1 RNAi
was modeled as well.

ANOVA and ANCOVA analyses of qPCR data

Expression values for each gene were normalized to the geometric
mean expression of four reference genes (S8, RP49, GAPDH and
elF'1-a). Each reference gene was assessed individually to ensure that
the CV was less than 40% in each experiment/colony combination,
and there were no significant differences in reference gene expression
between experimental groups (File S6, figshare).

Six predicted target genes of Broad and six predicted target genes
of Ftz-F1 were selected based on their strong relationship (a
regression coefficient in the 10th percentile) with their parent TF in
previous computational analyses (Chandrasekaran et al., 2011). The
influence of the TFs on these putative target genes was determined
in two ways: (1) using a multifactorial ANOVA and looking at the
effect of RNAi on target gene expression or (2) modeling TF
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expression levels as a continuous variable and using an ANCOVA
to determine the relationship between TF and target gene
expression. In both cases, a fixed effects model was used with
Type III Sums of Squares (File S1, figshare). Sample colony of
origin was included as a blocking factor; time and date of testing
were analyzed but did not have a significant effect on gene
expression and were dropped from the final models.

Transcriptional regulatory plasticity between Broad, Ftz-F1 and
their target genes was determined by conducting several different
behavioral and endocrine manipulations and observing their effect on
the TF—target gene relationships. We tested for context-dependent
effects of behavioral state (how the bee responded to a social stimulus,
i.e. an intruder or a queen cell), social environment (i.e. the mere
presence of an intruder or queen cell, independent of behavioral
response) and endocrine state (whether the bees were treated with
JHA or not). This was accomplished by examining the two-way
interactions of each of these response variables with TF expression
(via ANCOVA) as in the bioinformatic analyses detailed above.

During the 2013 field season, the baseline for social context was
provided by matched control groups that were not exposed to an
intruder or alarm pheromone but were otherwise treated in the same
manner. The effect of behavioral state on gene expression was
therefore nested within stimulus exposure (as behavioral state could
not be ascertained for the unexposed group). In 2014, by contrast,
the data were organized in a time series that was analyzed as a split-
plot in time with three levels (see information on collections above
for differences between 2013 and 2014), allowing for a direct
comparison of individuals before and after gene expression changes
were elicited by the social stimulus. Therefore, both behavioral state
and the response to stimulus could be resolved, allowing each to be
treated as a main effect, with their interaction term delineating the
difference between the way individuals were influenced by the
social stimulus. Additionally, the effect of methoprene on gene
expression and the TF’s regulatory relationships was also assessed.
Working with a small set of genes made it more feasible to use gene
expression analysis to explore a variety of factors that might affect
network plasticity.

In the behavioral maturation experiment, the efficacy of RNAi
treatments was confirmed by sampling treated bees on the day they
were released into the colony. The influence of RNAi was analyzed
as above but blocking only for colony of origin.

To ensure that hroad knockdowns did not induce global changes
in transcription, we also assessed the expression of a panel of six
predicted target genes of a third TF (CG17912) that were not
predicted targets of Broad and Ftz-F1. The fact that only one of these
genes was differentially expressed in response to RNAI indicates
that the effect of these treatments was largely specific to the putative
targets (Fig. S4; File S5, figshare).

RESULTS

Analyses of genome-wide transcriptomic profiles reveal
signatures of transcriptional regulatory plasticity as a
function of behavior

Signatures of transcriptional regulatory plasticity were found for 5 out
of 20 TFs: Broad, Yl-1, Trithorax-like (Trl), Creb and MTA1-like
(Fig. 1B, Table 1). Broad and YI-1 each exhibited evidence of
plasticity across two pairs of behavioral categories. Broad’s putative
regulatory relationships varied between aggressive bees and foragers
(OR=1.57, FDR=0.014) as well as between aggressive bees and hive
bees (OR=1.89, FDR=2.94e™*), and YI-1’s putative regulatory
relationships varied between aggressive bees and hive bees
(OR=2.02, FDR=0.037) as well as between foragers and hive bees

(OR=2.14, FDR=0.046). Trl’s putative regulatory relationships varied
between aggressive bees and hive bees (OR=1.98, FDR=2.38¢73),
and Creb’s and MTA1-like’s putative regulatory relationships varied
between aggressive bees and foragers (OR=1.52, FDR=0.030 and
OR=1.63, FDR=0.048, respectively). Broad and YI-1 thus
demonstrated the strongest evidence of plasticity, as the only TFs to
exhibit a signature of plasticity between more than one pair of
behavioral categories.

In addition to these results, ANCOVA revealed that the putative
targets of 14 out of the 20 TFs we studied were overrepresented
relative to the transcriptomic background when testing for a main
effect of TF expression (Table 1). These results are largely concordant
with the predictions of the bee brain TRN (Chandrasekaran et al.,
2011) despite using different statistical methodology and only a
subset of the samples that the original TRN was trained on. The fact
that we observed extensive significant main effects for the TFs on
their putative target genes also serves as a contrast to the signatures
(interaction effects) of transcriptional regulatory plasticity detected
for Broad, Y1-1, Trl, Creb and MTA 1-like.

RNAi and neuroendocrine manipulations alter behavior

As predicted, we found that broad RNA1 influenced both behavioral
maturation (age at onset of foraging and brood care) and aggression,
in automated field behavior analyses using RFID tags (Tenczar
etal., 2014) and laboratory behavioral assays. broad RNAi caused a
significantly earlier foraging onset age (Cox Proportional Hazards:
z=4.67, P<le™>; Fig. 2A). However, bees in different treatment
groups showed no foraging differences 3 days after RNAI treatment
(Cox Proportional Hazards, P=0.34), suggesting that the effect of
RNAI on the age at onset of foraging is delayed. broad RNAI also
caused a significant decrease in the intensity of aggression toward
intruder bees (linear mixed effects model: F; 45=19.95, P<le™* for
data collected in 2013 and F 545=10.27, P<le™? for data collected
in 2014; Fig. 2B, Table 2) and a significant increase in the intensity
of brood care (linear mixed effects model: F 513=26.98, P<le™S;
Fig. 2D, Table 2).

As with broad RNAI, fiz-f1 RNAI also significantly decreased the
age at onset of foraging (Cox Proportional Hazards: z=3.77,
P<le~3; Fig. 2A) and increased the intensity of brood care (linear
mixed effects model: F} ;73=20.10, P<le™*; Fig. 2E, Table 2). In
addition, as predicted, fiz-f1/ RNAI did not alter overall levels of
aggression (linear mixed effects model: F; 4,=0.67, P>0.4; Fig. 2C,
Table 2).

To explore the hypothesis that JH alters behavioral maturation at
least in part through Broad- and Ftz-F1-dependent pathways, we co-
administered broad or fiz-f1 RNAi and JHA and observed the
effects on brood care behavior. Consistent with this hypothesis,
JHA partially rescued the effect of RN A1 on brood care (Fig. 2D,E,
Table 2; linear mixed effects model, broad RNAi: F 5,p=13.50,
P<0.01; ftz-f1 RNAI: F} 174=6.31, P<0.05).

RNAi reduces expression of broad, ftz-1 and their target
genes

RNAI treatment altered the expression of 11 out of 12 predicted
target genes, confirming their status as targets and providing
additional support for the conclusions of our bioinformatics and
behavioral analyses. Importantly, broad knockdown also reduced
the expression of fiz-f1 and many of the fiz-f1 target genes (Fig. 3A)
but not vice versa (Fig. 3B). This result indicates that the previously
reported hierarchical relationship of these two TFs in Drosophila
melanogaster (Bonneton and Laudet, 2012) also exists in the adult
honey bee brain. It also suggests that pleiotropic TFs involved in
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Fig. 2. broad and ftz-f1 RNAi alter honey bee behavior. (A) broad and ftz-f1 RNAi both decreased the age at onset of foraging behavior (Cox Proportional
Hazards: z=4.67 and z=3.77, respectively). Data for gfp RNAi-treated control samples are also shown. (B) broad RNAi decreased aggression (linear mixed effects
model: Fy 45=19.95, P<1e™*). (C) ftz-f1 RNAi had no effect on aggression (linear mixed effects model: F; 4,=0.67, P>0.4). (D,E) broad and ftz-f1 RNAi increased
brood care (broad: linear mixed effects model: Fy 213=26.98, P<1e75; ftz-f1: F4 173=20.0, P<1e~*). The juvenile hormone analog methoprene (JHA) partially
rescued the effect of broad and fiz-f1 RNAIi on brood care. Different letters indicate statistically different groups (linear mixed model with Tukey’s post hoc
correction, P<0.05). In all box plots, center lines show the group median and crosses indicate the group mean; the limits represent the 25th and 75th percentiles,
and whiskers extend 1.5 times the interquartile range from these percentiles. For information on colony variability for these measures, see Table 2.

behavior, such as Broad, induce state-specific transcriptional
programs via the recruitment of more specialized downstream
regulators (e.g. Ftz-F1).

RNA:i supports the existence of transcriptional regulatory
plasticity

Using ANCOVA of brain gene expression, and consistent with the
results of the bioinformatic analyses presented above, we found that
several of the TF—target gene relationships varied as a function of
behavioral state (Fig. 4A), providing empirical evidence for

transcriptional regulatory plasticity. Additionally, we detected
transcriptional regulatory plasticity as a function of social context
independent of behavioral response (the presence of an intruder and
alarm pheromone that provokes aggression or a queen larva that
provokes brood care; Fig. 4B) and as a function of endocrine state
(treatment with JHA independent of behavioral effect; Fig. 4C).

DISCUSSION

Our findings extend the paradigm of transcriptional regulatory
plasticity, which is well established in evolutionary biology
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Fig. 3. broad RNAi influences the expression of Broad and Ftz-F1 target genes, but fiz-f1 RNAI affects only Ftz-F1 target genes. (A) broad RNAI brain
injections reduce the expression of both Broad and its targets (left) and Ftz-F1 and its targets (right) in the brain (ANOVA, P<0.05), suggesting that Ftz-F1 is
downstream of Broad-initiated transcriptional cascades. The y-axis represents gene expression of the broad RNAi-treated samples (n=51) relative to the
average expression of the gfp-treated control samples (n=52). (B) ftz-f1 RNAI brain injections reduce the expression of Ftz-F1 and its target genes in the brain
(right), but not Broad or its targets (left), suggesting that Broad and Ftz-F1 do not reciprocally regulate one another. The y-axis represents gene expression

of the ftz-f1 RNAi-treated samples (n=75) relative to the average expression of the gfp-treated control samples (n=78). In all box plots, center lines show

the group median and crosses indicate the group means; the limits represent the 25th and 75th percentiles, and whiskers extend up to 1.5 times the interquartile
range from these percentiles. Data presented are from 2013 (see Table 2). *P<0.05; **P<0.001; NS, not significant.

(Sorrells and Johnson, 2015) and developmental biology (Araya
et al., 2014; Lorberbaum et al., 2016; Sorrells and Johnson, 2015),
to neurobiology and to the shorter time scales associated with neural
and behavioral plasticity. We demonstrated that the precise
relationships between a TF and its target genes depend on the
behavioral and endocrine state of each individual bee as well as its
social context (Figs 1 and 4).

Through bioinformatic analyses, we showed the existence of
brain transcriptional regulatory plasticity by examining changes in
putative TF—target gene relationships associated with behavior.
Although we lack evidence that these TFs bind directly to the
cis-regulatory modules of their predicted targets, TF—target gene
relationships were inferred by algorithms designed to find direct
TF—target gene connections (Chandrasekaran et al., 2011).
Moreover, the results of the TRN that produced these inferences
(Chandrasekaran et al., 2011) are generally consistent with cis-
regulatory analyses of genes differentially expressed across
behavioral contexts (Ament et al., 2012a; Khamis et al., 2015).
Together with the results of our RNAIi experiment (Fig. 3), this
suggests that a significant number of the predicted TF—target gene
relationships represent direct interactions.

Signatures of transcriptional regulatory plasticity were found for
only five out of 20 TFs analyzed: Broad, Creb, MTA1-like, Trl and
YI-1, suggesting that the phenomenon of transcriptional regulatory
plasticity may be preferentially associated with specific subsets of

TFs. Orthologs of these five TFs in Drosophila are either highly
pleiotropic integrators of cell signaling pathways (Broad and Creb)
or epigenetic regulators of gene expression (YI-1, Trl and MTA1-
like). Broad is known to be a critical signal integrator in diverse
endocrine cascades (Bonneton and Laudet, 2012), and was one of
only four TFs predicted to regulate all three different behavioral
categories (aggression, maturation and foraging) in the bee brain
TRN (Chandrasekaran et al., 2011). Creb is essential for the
transduction of kinase signaling cascades related to neuronal
activation, plasticity and learning and memory, and has been
implicated in gating behavioral responses to sensory stimuli
(Gehring et al., 2016) and as a critical regulator of foraging
behavior in honey bees (Khamis et al., 2015). YI-1 is a histone
acyltransferase (Kusch et al., 2004), while MTA1-like is a histone
deacetylase (Sen et al., 2014; Swenson et al., 2016) and both are
components of nucleosome remodeling complexes (Sen et al.,
2014; Swenson et al., 2016; Weber et al., 2014). Trl (the insect
ortholog of GAGA factor) is a chromatin remodeler that inhibits
Polycomb Group activity (Ringrose and Paro, 2007). Epigenetic
factors (including DNA methylation and histone modifications)
have been implicated in behavioral plasticity in honey bees and
other social species (Herb et al., 2018, 2012; Simola et al., 2016),
and are also capable of inducing transcriptional regulatory plasticity
(Araya et al., 2014). We therefore speculate that transcriptional
regulatory plasticity may rely especially on pleiotropic signal
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Fig. 4. RNAi and ANCOVA of qPCR data support the existence of transcriptional regulatory plasticity as a function of behavioral state, social context
and neuroendocrine state. Each node depicts one Broad or Ftz-F1 target gene, and each edge represents either a main effect or an interaction effect,
which is indicative of plasticity (ANOVA, P<0.05). (A) Using gPCR to compare the TF—target relationships between bees with different behavioral states reveals
evidence of plasticity. ‘Aggressive state’ refers to whether a bee responded aggressively to an intruder, and ‘brood care state’ refers to whether a bee
responded to the presence of a queen larva by feeding it. (B) Analyzing the transcriptomic response of bees in different social contexts reveals that a TF’s
relationships with its target genes may change rapidly as a function of a social stimulus. ‘Aggressive context’ refers to whether bees were exposed to an
intruder and alarm pheromone, while ‘brood care context’ refers to exposure to the queen larva (independent of the behavioral response to the social stimulus).
(C) Transcriptional regulatory plasticity as a function of endocrine state (treatment with JHA independent of behavioral effect).

integrators or epigenetic regulators, which can initiate and maintain RNAI treatment confirmed that Broad is a pleiotropic regulator of
contextually specific transcriptional programs that depend on the honey bee behavior. While broad RNAI influenced both behavioral
internal state of the individual organism. maturation (i.e. foraging and brood care) and aggression, fiz-f1 RNAi
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influenced only behavioral maturation (Fig. 2). It may seem puzzling
that both brood care and the likelihood of foraging increased as a
result of RNAI, because they are generally seen as mutually exclusive
behavioral states. Brood care is generally performed when the bee is
young, and foraging is performed when older. However, there is
evidence to suggest that JH affects behavioral maturation in a dose-
dependent manner. There is a dose-dependent effect of the JHA
methoprene on the age at onset of foraging (Robinson, 1987). In
addition, low doses of JH treatment increase the development of the
brood food-producing hypopharyngeal glands, while high doses
prematurely decrease their development (Rutz et al., 1976). Based on
these results, we suggest that broad and fiz-f1 RNAI increased the
likelihood of brood care at young ages and increased the likelihood of
foraging at older ages. This is consistent with the finding that bees in
different treatment groups showed no foraging differences 3 days
after RNAI treatment, which was the age at which brood care was
assayed. By contrast, co-administration of RNAi with JHA advanced
maturation past the point where brood care is more likely to occur,
causing a reversion to baseline levels of this behavior.

By examining changes in the TF—target gene relationship as a
function of aggression and brood care, we found empirical evidence
for transcriptional regulatory plasticity in the context of behavioral
state, endocrine state and social environment for both Broad and
Ftz-F1. Because these results were derived from the knockdown of
individual TFs, they suggest that the observed changes in behavior
and brain gene expression are due to changes in the strength of
specific TF—target gene relationships, rather than more indirect
effects. The fact that transcriptional regulatory plasticity was
observed for these TFs even though only one of them was
identified in our bioinformatic screen reinforces the idea that
quantitative (rather than qualitative) differences in the prevalence of
regulatory plasticity exist, potentially related to a TF’s properties.

broad RNAI reduced the expression of Ftz-F1 and its target
genes in the brain but not vice versa (Fig. 3), confirming the
previously shown hierarchical relationship between Broad and
Ftz-F1, with Broad upstream of Ftz-F1 (Bonneton and Laudet,
2012). As the two TFs modulated brood care and the age at onset of
foraging behavior in a similar fashion, it is likely that Broad’s
influence on these behaviors also involves Ftz-F1. Broad’s effect
on aggression, however, is probably independent of Ftz-F1, as
fiz-f1 RNAI did not affect aggressive behavior (though Ftz-F1 may
play some role in aggression in honey bees, as it has been found to
be differentially expressed in previous aggression-related brain
transcriptomic studies: Alaux et al., 2009; Rittschof et al., 2014).
These results lead us to speculate that one possible route for
a pleiotropic behavioral regulator like Broad to influence
multiple behavioral states is via discrete regulatory subnetworks
with branching context-specific transcriptional cascades. This
hypothesis is consistent with the importance of network hierarchy
in determining the contribution of a TF to establishing phenotypic
plasticity (Bhardwaj et al., 2010).

The possibility of off-target and deleterious effects always exists
when using RNAI, so we note that the broad and fiz-fI RNAi results
reported here can be seen as ‘gain of function’ changes. Causing an
early onset of foraging (the most physically and cognitively
demanding task in the honey bee repertoire; Robinson, 1992) and
an increase in the intensity of brood care (another complex behavior)
is evidence that the treated bees were capable of functioning
normally. Moreover, it suggests that the RNAi treatment had
specific effects on behavioral state. Early onset of foraging in honey
bees also occurs in response to various stressors such as pathogens
(Goblirsch et al., 2013), starvation (Schulz et al., 1998) and

demographic disruption (Huang and Robinson, 1996). However, we
used conservative thresholds for the identification of foragers
(requiring multiple foraging trips over more than one day; see
Materials and Methods), making it unlikely that these bees were
substantially impaired by the treatment.

Future studies should focus on modeling plasticity across the entire
transcriptome to generate TRNs that capture shifts in regulatory
architecture associated with behavior. In addition, an integration of
the contributions of site-specific epigenetic modifications (Hamilton
et al., 2018) and motif-binding properties of effectors (Khakharn
et al, 2018) will be necessary to fully elucidate the causal
connections between brain transcriptional regulatory plasticity and
behavior.

The findings presented here are derived from whole-brain
transcriptomes, so they represent an aggregate of the individual
states of each neuronal and glial cell in the brain. Brains are highly
compartmentalized and consist of numerous specialized regions and
neuronal subtypes. Only a subset of these neurons is likely to be
activated in a given social context, and recently it was shown that even
neurons of the same subtype and lineage can exhibit strikingly
different transcriptomic profiles (Poulin et al., 2016). However,
transcriptome-wide differences in brain expression associated with
naturally occurring behavior have been reported for a variety of
species (Hughes et al., 2012; Oliveira et al., 2016) ever since they
were first discovered in honey bees (Whitfield et al., 2003). Given that
many behaviors are known to be orchestrated in specific regions of
invertebrate and vertebrate brains, why should there be such robust
patterns of behaviorally related gene expression at the whole-brain
level in honey bees and other organisms? A technical explanation is
that the whole-brain transcriptomic profile largely reflects the profiles
of the larger brain regions; in honey bees, this would include the
mushroom bodies and optic lobes, which together account for ~2/3 of
the neurons in the adult bee brain. A biological explanation is that
the whole-brain transcriptomic profile arises because there are
similarities in gene expression in different brain regions. For
instance, numerous neuromodulators and hormones are known to
directly contribute to long-term changes in honey bee behavior
(Hamilton et al., 2017), and many are known to have receptors in
multiple regions of the adult insect brain (Baumann et al., 2017; Perry
and Barron, 2013). This makes it likely that at least some
neuromodulators and hormones are capable of coordinating gene
expression across brain regions. Determining the role that either or
both of these explanations play in contributing to the dynamics of
brain transcriptional regulatory plasticity, and neural and behavioral
plasticity in general, will require integrating information at the cellular
level. Recent advances in single-cell RNA sequencing make this
feasible for the first time, and future studies should use these exciting
new developments to examine transcriptional regulatory plasticity at
the level of individual neurons.

In summary, transcriptional regulatory plasticity in the brain
occurs in the context of social behavior. The transcriptomic
architecture underlying complex behavior thus appears to be more
dynamic than previously appreciated. This makes it important to
consider brain transcriptional regulatory plasticity along with well-
known neurochemical, neurophysiological and neuroanatomical
mechanisms to achieve a more complete understanding of neural
and behavioral plasticity.
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Figure S1: RUVcorr corrects for batch-wise variation prior to ANCOVA.
(A) Principal Component Analysis (PCA) revealed substantial batch effects between microarray
datasets, which are conflated with the behavioral states (aggressive bees, hive bees and foragers)

assayed. (B) To prevent this from affecting the ANCOVAs, we applied the RUVcorr package,
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which largely eliminated the batch effects along the first two principal components. To determine
whether remaining batch effects were likely to bias analyses of transcriptional regulatory plasticity,
we performed PCA separately on putative target genes (C) and the transcriptomic background (the
rest of the probes on the original microarrays) (D). Both sets of genes resulted in similar patterns
of variance distribution, suggesting that neither set was unduly biased by batch effects. Shaded

areas represent the 95% confidence intervals for each group.
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Figure S2: Effect of RNAi brain injection on mortality.
Low mortality was observed on the day of behavioral testing (48 hours after RNAI injection) for
experiments contrasting br and gfp RNAi (A), and fiz-fI and gfp RNAi (B). No significant

differences in mortality were found between RNAi or JHA treatment groups (Kruskal-Wallis test).
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Figure S3: Diminished efficacy of RNAI treatment in trials conducted in 2015 relative to 2013
and 2014.

(A) RNAI was effective in 11 out of 14 trials performed in 2013 and 5 out of 6 performed in 2014.
We wish to add to the literature the observation that effect strength declined in 2015, after the
experiments for this study were performed. We speculate that the reason for this decline might be
related to world-wide declines in bee health, especially the increase in bee viruses during this time,
but the precise mechanism is unknown. Although RNAi in honey bees has been effectively
administered to adult bees by multiple laboratories including our own using abdominal (Ament et
al., 2012; Ament et al., 2011; Guidugli et al., 2005; Wang et al., 2012) and brain (Farooqui et al.,
2003; MiiBig et al., 2010; Rein et al., 2013) and targeting fiz-f1 in pharate adults (Mello et al.,

2018), potential users of this technique should be mindful of the above-noted variation.
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Figure S4: Broad RNAI has reduced influence on the expression of putative CG17912 target
genes.

To explore whether broad RNAI brain injection had nonspecific effects on gene expression, we
tested whether five putative target genes of the TF CG17912 responded to broad RNA1 treatments.
The y-axis represents gene expression of the broad RNAi-treated samples (n = 51) relative to the
average expression of the gfp treated control samples (n = 52). Only 1 out of 5 genes was
significantly affected by broad RNAi (ANOVA, p < 0.05), providing some indication of
specificity. In all box plots, center lines show the group median and x’s indicate the group means;
the limits represent the 25th and 75th percentiles, and whiskers extend up to 1.5 times the

interquartile range from these percentiles.
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Table 51: Nucleotide sequences for qPCR probes and RNAI constructs used in this study

Gene Name 0GS 2.0 qPCR Forward Primer qPCR Reverse Primer

RCP1 - TCAATTAACTCGGAATCGGA CCTGGATTTCCCTGCTGAT

RP49 GB10903 GGGACAATATTTGATGCCCAAT CTTGACATTATGTACCAAAACTTTICT

58 GB12747 TGAGTGTCTGCTATGGATTGCA TCGCGGCTCGTGGTAAA

GAPDH GB14798 ACTGGTATGGCCTTCCGTGTAC TGCCAAGTCTAACTGTTAAGTCAACA

EiF1a GB16844 CAATTTCTGGTTGGCATGGA CATCCCTTAAACCAAGGCATTT

broad GB30150 AGAAGCCGAGGGTGCTGTC CATCGAGAAATCGGTGGGC

fiz-f1 GB16873 ACCAACTACCACCTACTCATTACCAA GCAGACCGGACAGAGTTCTTCT

ERBP GB11484 TCACATTTGGATTATTATTCTGGACG AGCATCAGTCATAAGTTCATCCACA
GB11842 AGTCGACCGTGGGAGTGGT TCTGTGGACCCAGCCTGTG
GB11874 GTTTATGATGCAACGCAAAGCT CATTGCTGGAGCCATGAAACT

oys GB15142 ATGGCTTAGATCGATTGTGTACGA GGCAGAAAGGGAGTATGTGAACA
GB15320 AGTGGTTTGTCTGGAACATGGA TGGTTGCAATTTGGTAGCTTCA

Nrk GB15972 GTATGGGCGTTCGCGGTAT TCTTCGTGCGTCATTCCATAAT
GB16117 TCCTAAAACTTTGCGTCACACG TGCCATCGTTTTAGAATTTGGA

TFillea GB17516 GTACCAACTGTAACTGTTGCAGGAA ACAGGAGTCATTTCTGCTATTAATGC

TyrR GB17991 GGCCCCTTCGTATCGTTCA TGAACGGCATCACGAGGAT
GB14024 TCCAGAAGAAAAATACCAAGTATCGC GAATCTGGAGTCACGACAAGACAA

unc79 GB15608 GGTTTCATCAAAGACAGGGACAA TCCGGTATCGTGGTCTTGAATT

Toll-7 GB15177 CTGACCTTCCTCCCGTTACG ACACCGGAAACGTCACCAA

Construct Name Antisense Sense

ftz-f1 Construct 1

CCACUUAGACGUUUCUUCUUGAUAGUU

CUAUCAAGAAGAAACGUCUAAGUGG

ftz-f1 Construct 2

UUUAAAUACUAAUUGAGGUUCUUUCUC

GAAAGAACCUCAAUUAGUAUUUAAA

ftz-f1 Construct 3

UUGCCAUAUCUUGUCUACGUUGUCUUU

AGACAACGUAGACAAGAUAUGGCAA

broad Construct 1

CGCAACAAUUGCUGCACGGUGGUCGGU

CGACCACCGUGCAGCAAUUGUUGCG

broad Construct 2

ACUGCUAAGGGAACGCUGAUGCACGUU

CGUGCAUCAGCGUUCCCUUAGCAGT

broad Construct 3

CGUUAUACUGCUUUGGUAAUUGUUCCA

GAACAAUUACCAAAGCAGUAUAACG
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