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Sleep regulates visual selective attention in Drosophila
Leonie Kirszenblat1, Deniz Ertekin1, Joseph Goodsell1, Yanqiong Zhou1, Paul J. Shaw2

and Bruno van Swinderen1,*

ABSTRACT
Although sleep deprivation is known to impair attention in humans
and other mammals, the underlying reasons are not well understood,
and whether similar effects are present in non-mammalian species is
not known. We therefore sought to investigate whether sleep is
important for optimizing attention in an invertebrate species, the
genetic model Drosophila melanogaster. We developed a high-
throughput paradigm to measure visual attention in freely walking
Drosophila, using competing foreground/background visual stimuli.
We found that whereas sleep-deprived flies could respond normally to
either stimulus alone, they were more distracted by background cues
in a visual competition task. Other stressful manipulations such as
starvation, heat exposure and mechanical stress had no effects on
visual attention in this paradigm. In contrast to sleep deprivation,
providing additional sleep using the GABA-A agonist 4,5,6,7-
tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) did not affect attention
in wild-type flies, but specifically improved attention in the learning
mutant dunce. Our results reveal a key function of sleep in optimizing
attention processes inDrosophila, and establish a behavioral paradigm
that can be used to explore the molecular mechanisms involved.
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INTRODUCTION
The restorative effect of a night’s sleep seems obvious, yet we still
know very little about the function of sleep and how it impacts our
behavior. Studies in humans and other animals suggest that a
fundamental function of sleep is to preserve cognitive functions such
as learning, memory and attention (Stickgold, 2005). This implies
that sleep promotes brain plasticity, for example by strengthening
neuronal circuits to consolidate memories (Diekelmann and Born,
2010) or by maintaining optimal levels of neuronal functions by
globally altering synaptic strengths (Tononi and Cirelli, 2014). If a
major function of sleep is to promote plasticity, a brain process that
may be particularly vulnerable to sleep loss is selective attention.
Given that selective attention requires precise temporal coordination
between different neural populations (Fries et al., 2001; Elhilali et al.,
2009), it may be most vulnerable to the changes in neural processing
that could accrue when sleep homeostasis mechanisms are not in
place (Kirszenblat and van Swinderen, 2015). Consistent with this
idea, sleep deprivation in humans leaves basic sensory processing
intact (Casagrande et al., 2006; Killgore, 2010; Kendall et al., 2006),
whereas tasks that involve high attentional load are impaired (Chee

and Chuah, 2007; Kong et al., 2011). For this reason, sleep and
attention may share a deeper relationship than previously thought,
and one that has not been thoroughly investigated in genetic models
such as Drosophila.

InDrosophila, sleep deprivation has been associated with deficits
in a variety of behaviors. Sleep deprivation impacts olfactory and
visual memory in Drosophila (Glou et al., 2012; Seugnet et al.,
2008), as well as courtship memory (Ganguly-Fitzgerald et al.,
2006) and aggression in male flies (Kayser et al., 2015). In contrast
to sleep deprivation, induction of sleep has been shown to reverse
learning deficits in the short-term memory mutants dunce and
rutabaga, and in a fly model of Alzheimer’s disease (Dissel et al.,
2017). This suggests that sleep can be used as a powerful therapeutic
to enhance learning and memory. As the ability to pay attention may
be a prerequisite for the aforementioned behaviors, we questioned
whether optimizing selective attention may be a key function of
sleep in Drosophila.

In this study, we developed a simple, high-throughput method to
study visual selective attention in flies. We found that whereas sleep
deprivation did not affect simple visual behaviors (optomotor and
fixation), sleep-deprived flies were more distractible in a visual
attention task involving competing stimuli. Normal attention was
restored following sleep, indicating that sleep promotes
behavioral plasticity. In contrast to sleep deprivation, we found
that inducing additional sleep using the GABA-A agonist 4,5,6,7-
tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) had no effect on
wild-type flies but could restore normal attention to dunce learning
mutants. Together, our results suggest that sleep optimizes selective
attention processes in Drosophila.

MATERIALS AND METHODS
Fly stocks and experimental conditions
Strains used in this study were Canton-S (CS) wild-type flies, dunce1

mutants (outcrossed to CS) and rutabaga2080. Flies were cultured on
standard medium (agar, yeast, sugar, water, nipagen, proprionic acid)
at 25°C, 50–60% humidity and reared with a 12 h light:12 h dark
cycle. The same conditions were used for sleep experiments.

Sleep and visual behavior
Our visual arena was adapted from Buridan’s paradigm (Götz,
1980). Flies had their wings clipped under CO2, at least 2 days prior
to the experiment. During the experiment, flies walked freely on a
round platform, 86 mm in diameter, surrounded by a water-filled
moat to prevent escape (see Fig. S1). An individual fly was only
tested once in each experiment, such that it was not influenced by
previous visual stimuli. The temperature of the arena was 24–26°C
during experiments. Each experiment lasted 3 min, and the visual
stimuli were presented on the horizontal or the vertical axes in
alternation. Optomotor experiments were conducted with clockwise
and anticlockwise gratings for 1.5 min each. A camera (Sony Hi
Resolution Colour Video Camera CCD-IRIS SSC-374) placed
above the arena was used to detect the fly’s movement on theReceived 29 August 2018; Accepted 17 October 2018
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platform at 30 frames per second, and open-source tracking software
was used to record the position of the fly (Colomb et al., 2012).
Sleep was quantified using theDrosophila arousal tracking (DART)
system, as previously described (Faville et al., 2015) using the 5 min
criterion for sleep (Shaw et al., 2000; Hendricks et al., 2000).

Visual stimuli
Each LED panel comprised 1024 individual LED units (32 rows by
32 columns) and was computer controlled with LED Studio software
(Shenzen Sinorad, Medical Electronics, Shenzen, China). For
specifications of set-up, see Fig. S1. The LEDs had a refresh rate
of 200 Hz, ensuring there was no background flicker visible to the
flies. All visual stimuli were created in Vision Egg software (Straw
et al., 2008), written in Python programming language (Ferguson
et al., 2017), and are available upon request. The walls of the arena
consisted of 6 LED panels of green (520 nm) and blue (468 nm)
LEDs that formed a hexagon surrounding the moat (29 cm diameter,
16 cm height), and onto which the visual stimuli were presented.
Fixation stimuli were two dark stripes 180 deg apart, each 9 deg in
width and 45 deg in height from the centre of the arena. The fixation
stripes ranged from 38 to 55 deg in height and 4–14 deg in width
depending on the fly’s position in the arena. For visual competition
experiments, 7 Hz flickering stripes (targets) were overlaid on a 3 Hz
grating (speed 54 deg s−1, luminance 402 lx) in the background. For
visual experiments in which stationary stripes were used as a
distractor, the target stripes were flickered at 3 Hz, and the
distractor stripes were non-flickering. For experiments in which
the luminance contrast of the grating was increased, the
increments used were 0, 75, 146, 224, 402, 473, 649, 730 lx.

Sleep deprivation
Female CS flies hadwings clipped on day 0–1 post-eclosion, andwere
then reared at low density in vials (20 females, and up to 5 males).
When flies were 3–5 days old theywere placed in fresh vials, and sleep
deprived for 24 h from 11:00 h until 11:00 h the next day, and then
tested in the visual arena immediately afterwards. Control flies were
reared in exactly the sameway (i.e. wings clipped at the same time, and
then transferred to fresh vials), except they were not sleep deprived.
Mechanical sleep deprivation was achieved using a sleep-nullifying
apparatus (SNAP) device (inside a 25°C incubator), which has been
shown to sleep deprive flies without triggering stress responses
(Shaw et al., 2002). The device tilted back and forth, forcefully
knocking and displacing flies every 20 s (or 10 s where indicated).
Flies were contained in vials (20 females, 5 males) during the
sleep deprivation, because containing them individually in small
Trikinetics tubes affected their performance in the attention assay.
During the experiments, flies waiting to be tested were gently
handled at least every 3 min so that they could not fall asleep prior
to testing. For correlation analysis between sleep and attention,
flies were sleep deprived as a group in vials for 24 h, tested
individually for visual attention, and then in the following 6 h,
sleep was measured for each individual in Trikinetics tubes.

Pharmacology
THIP was administered to flies in standard food at 0.1 mg ml−1

concentration for 2 days, and removed 1 h prior to measuring
performance, as described previously (Dissel et al., 2015).

Data analyses
Analyses of visual responses were performed using CeTran (3.4)
software (Colomb et al., 2012), as well as custom-made scripts in R
programming language. Stripe deviation was calculated as the

smallest angle between the fly’s trajectory and either of the vertical
stripes (Ferguson et al., 2017; Colomb et al., 2012). For optomotor
responses, the angular velocity (turning angle in deg s−1) in the
direction of the moving grating was calculated. CeTran (3.4)
software (Colomb et al., 2012) was also used to calculate walking
speed during visual experiments, and pausing (the number of times
a fly was immobile for more than one second). All sleep and arousal
metrics were obtained through the DART software. Statistical
analyses were performed using Prism, R and MATLAB software.
Lillifors tests were performed to confirm the normality of the data,
and t-tests or one-way ANOVAs were used to detect significant
differences between groups.

RESULTS
A visual attention paradigm for freely walking flies
Selective attention allows us to focus on a single object or group of
objects, while ignoring less salient information (La Berge, 1983;
Eriksen and St James, 1986). To examine attention-like behavior in
freely walking Drosophila, we designed a paradigm to measure
behavioral responses of flies to competing visual stimuli, involving
‘targets’ and ‘distractors’. We took advantage of two robust visual
behaviors inDrosophila: (1) fixation – a fly’s tendency to orient and
walk towards a visually salient object – and (2) optomotor behavior,
whereby a fly will turn in the same direction as wide-field motion to
stabilize its visual surroundings (Heisenberg and Wolf, 1984).
Fixation has been previously measured using Buridan’s paradigm,
where flies with clipped wings walk back and forth between two
opposing vertical black stripes (Götz, 1980; Ferguson et al., 2017).
We modified this paradigm to measure behavioral responses to
competing visual stimuli, using two opposing stripes as ‘targets’ in
the foreground and adding a wide-field motion stimulus as the
‘distractor’ in the background (Fig. 1A). A similar configuration has
been used for ‘figure/ground’ discrimination in tethered flight
experiments (Heisenberg and Wolf, 1984; Fox et al., 2014; Fenk
et al., 2014; Aptekar et al., 2015; Aptekar and Frye, 2013), but this
complex stimulus has not been tested in walking flies.

We measured fixation on the targets by calculating the deviation
angle between the fly’s heading direction and the target stripe, with
smaller angles indicating greater attention to the target (Fig. 1B)
(Colomb et al., 2012). Response to the distractor, the motion
stimulus, was measured by the angular velocity in the direction of
motion [the turning angle s−1 (γ): Fig. 1B]. First, we investigated
visual responses to both stimuli alone, across a range of frequencies
(Fig. S2A,B). Flies fixated best on targets flickering in the range of
3–7 Hz (Fig. S2A), while optomotor responses were highest at
16 Hz (Fig. S2B). For visual competition experiments, we used a
target frequency of 7 Hz, as this stimulus was very salient to the flies
and has previously been found to evoke strong fixation behavior
(Paulk et al., 2015). The distractor was a lower-contrast grating that
spanned the entire arena and moved ‘behind’ the flickering targets.
We used a grating frequency of 3 Hz (54 deg s−1) at a mid-
luminance contrast, since we found responses under these
conditions were robust and consistent among flies, eliciting
circular walking responses (Fig. 1E), and provided a low enough
level of distraction for the flies such that they could still continue to
fixate on the targets. Adding this low-contrast motion distractor
significantly reduced the flies’ fixation on the target stripes: the
straight paths evident when the targets were presented alone
(Fig. 1C) were replaced by a combination of straight paths and
circular paths, often angled in the direction of motion (Fig. 1D). We
modified the salience of the grating distractor by adjusting the
luminance contrast in linear increments (see Materials and

2

RESEARCH ARTICLE Journal of Experimental Biology (2018) 221, jeb191429. doi:10.1242/jeb.191429

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/doi/10.1242/jeb.191429.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.191429.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.191429.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.191429.supplemental


Methods) (Fig. 1F,G). As expected, when the grating had a higher
contrast (more salient), the distraction effect increased (Fig. 1F).
Motion responses to the distractor also increased (Fig. 1G) but
appeared to plateau earlier than target deviation in response to
increasing the distractor salience. This suggests that increased target
deviation (Fig. 1F) may be a more sensitive measure of the distractor
effect than increased optomotor behavior (Fig. 1G). In summary,

our results show that attention-like responses towards fixed targets
can be effectively modulated (and titrated) by a motion distractor
stimulus in freely walking flies.

Sleep-deprived flies are more distractible
Studies in humans and other animals have shown that sleep loss can
impair a variety of cognitive behaviors, such as learning, memory
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and attention (Alhola and Polo-kantola, 2007; Drummond et al.,
2012; Lim and Dinges, 2010). Similarly, studies inDrosophila have
indicated a role for sleep in visual and olfactory memory (Glou
et al., 2012; Li et al., 2009; Seugnet et al., 2008; Seugnet et al.,
2011). However, it is not known whether sleep modulates attention-
like behavior in Drosophila. To investigate whether sleep
deprivation affects visual attention, we sleep deprived flies for
24 h using the SNAP apparatus according to previous methods
(Shaw et al., 2002). We first confirmed that flies were sleep deprived
by examining their sleep rebound (i.e. the increase in sleep need
following sleep deprivation). Following sleep deprivation, sleep
was monitored using the DART system (Faville et al., 2015) across
three consecutive days, while another group of flies was tested for
visual attention (Fig. 2A). As expected, sleep-deprived flies slept
more than control flies did on the day after sleep deprivation (day 1),
particularly during the daytime; whereas by days 2 and 3, there was

no difference in sleep duration between the sleep-deprived and
control flies (Fig. 2B).

Following sleep deprivation, we measured fixation to stationary
targets and optomotor responses to a moving grating, in scenarios in
which the stimuli were presented alone or in competition (with the
grating at three different levels of luminance contrast of the
distractor) (Fig. 2D,E). Optomotor responses to the moving grating
in all visual scenarios were largely unaffected by sleep deprivation
(Fig. 2E), as were fixation responses in the absence of the grating
(Fig. 2D, first point from the left). Interestingly, the effect of sleep
deprivation on fixation behavior was only evident when the two
visual stimuli were combined (Fig. 2C), as indicated by significantly
increased target deviation for all three combined conditions
(Fig. 2D). This suggests that sleep-deprived flies are specifically
affected in their response to visual competition. Finally, we tested
whether flies could recover from sleep deprivation by allowing them
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to rest for 24 h. For this experiment (and all subsequent
experiments involving visual competition), we used a grating of
mid-luminance contrast (indicated by the red arrowheads in
Fig. 2D,E). Again, we found that sleep-deprived flies were more
distractible (Fig. 2F, red bar), but their attention returned to normal
following 24 h rest (Fig. 2F, black bar). Overall, our results
suggest that sleep deprivation alters visual attention, and that this
effect is reversible.
Although we saw no alterations to optomotor responses of sleep-

deprived flies when the grating was presented alone, we considered
the possibility that the sleep deprivation phenotype may be caused
by an increased sensitivity to motion, which could potentially arise
from the preceding 24 h of constant motion they experience in the
SNAP apparatus. However, flies sleep deprived in 24 h of darkness
showed a similar impairment of attention compared with controls,
suggesting that visual experience did not play a role in the sleep
deprivation phenotype (Fig. S3). We next asked whether the
increased distractibility of sleep-deprived flies was specific to the
motion stimulus, or whether it could apply to other types of visual
distractors. We used a stationary stripe as a distractor that was
identical to the target but less salient as it was non-flickering
(Fig. 3A). As with the moving grating in the preceding experiments,
attention to the target could be titrated by modulating the salience
(i.e. contrast) of the distractor (Fig. 3B,C); increasing the salience of
the distractor correspondingly increased distractibility (Fig. 3C).
Interestingly, and consistent with our previous attention
experiments, we found that sleep depriving flies for 24 h resulted
in increased target deviation (poorer attention to the target) in the
presence of this alternative distractor object (Fig. 3D, red bar). Our
observation that sleep deprivation is similarly disrupted by
different types of distractors suggests that a common attention
mechanism is affected, which is not dependent on lower-level
visual responses.
We next asked whether increased distractibility could be related

to the amount of sleep lost. We submitted flies to a shorter period of
sleep deprivation (12 h at night), and although there was a slight
trend towards increased distractibility for the 12 h sleep deprivation,
this effect was not significant (Fig. 3D, grey bar). This suggests that

24 h of sleep deprivation is required to observe effects on attention
(Fig. 3D). We also wished to examine the amount of sleep loss in
individual flies to see whether it was correlated with the severity of
the attention defect in the same animals. In attempting this
experiment, we made an interesting observation: flies that have
been housed in small tubes used for sleep analysis (Trikinetics
tubes), behaved erratically and were unable to fixate normally on
visual objects (Fig. 4A,B). The effect on fixation behavior appeared
to be due to confinement, not isolation, since flies that were isolated
in larger vials behaved normally (Fig. 4A,B). Interestingly, their
optomotor behavior appeared largely normal, indicating that the
impairments were specific to fixation behavior (Fig. 4C). The
abnormal fixation behavior of flies housed in sleep analysis tubes
precluded us from addressing how individual attention behavior
correlated with prior sleep. Nevertheless, we were able to measure
sleep following the attention test in flies that had been sleep
deprived in larger vials, as per our protocol (see Materials and
Methods). We found no correlation between sleep and attention
(Pearson r correlation, −0.041; P=0.802; n=40 flies), although how
‘sleepy’ individual flies actually were remained unknown. The
effect of confinement on visual fixation (Fig. 4B) presents a
challenging problem for relating sleep and attention phenotypes at
an individual level.

Given that sleep deprivation reduces overall activity, we
wondered whether this may explain the reduced orientation to
salient features in the visual attention assay. To investigate this, we
performed a correlation analysis on all data (from Fig. 2), to see if
walking speed of individual flies could predict selective attention
behavior (target deviation). However, we found no correlation
between attention and walking speed for either sleep-deprived or
control groups (Fig. 5A,B).

Considering that the sleep deprivation protocol might be stressful
(it involves waking the flies every 20 s by mechanical stimulation),
we further examined the effects of different types of stress on the
flies’ visual attention. This allowed us to answer two questions: (1)
whether attention phenotypes could be modulated by environmental
stressors (e.g. heat, mechanical stress and starvation), which would
indicate that the sleep deprivation effect on attention may simply be
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caused by stressful situations, and (2) whether the sleep deprivation
phenotype occurs under different environmental conditions (i.e.
how robust the effect is). For all these experiments, we measured the
flies’ visual responses in the combined stimulus paradigm (in which
flies fixate on targets in the presence of distractors) (Fig. 1A).
First, we measured the effect of heating flies to 31°C for 24 h

(Fig. 6A). Prolonged exposure to heat had no effect on attention,
whereas the increase in distractibility caused by sleep deprivation
was still present under conditions of heat stress (Fig. 6A). This
indicates that heat does not influence attention in this paradigm, or
the effect of sleep deprivation on attention. Next, we measured the
effect of mechanical stress, using a stimulation protocol that would
provide the same total amount of stimulation experienced during the
sleep deprivation protocol, but including extended unstimulated
periods to allow sleep. This was achieved by subjecting flies to
mechanical stimulation for 1 h followed by rest for 1 h, repeated
across 24 h, but with double the rate of stimulation (to keep the
actual number of stimuli the same as for the sleep-deprivation
regime) (Fig. 6B). Unlike sleep-deprived flies, flies subjected to this
stimulation regime containing rest periods had normal attention,
indicating that the sleep deprivation effect was not due to
mechanical stress of perturbing the flies (Fig. 6B). We next

assessed the effects of starvation, as sleep is known to be affected by
food availability (Siegel et al., 2009). In Drosophila, food
deprivation has been found to suppress sleep (Keene et al., 2010).
Feeding was assessed during sleep deprivation by measuring the
intake of food containing blue food dye and, as previously reported,
sleep-deprived flies showed similar food intake to controls
(Thimgan et al., 2010). We then tested whether depriving flies of
food, with or without sleep deprivation, affected visual attention.
The visual attention scores of starved controls were not different
from those of fed controls, suggesting that starvation per se does not
impair visual attention (Fig. 6C). As expected, sleep deprivation
impaired visual attention in both starved and fed conditions but,
interestingly, starvation was able to partially suppress this effect
(Fig. 6C, ‘SD fed’ vs ‘SD starved’), suggesting that starvation may
provide some level of protection against the detrimental effects of
sleep deprivation. In summary, our results show that sleep
deprivation consistently affects visual attention, even under
conditions of heat and starvation, but that visual attention is
resistant to the effects of a variety of stressors in the absence of sleep
deprivation. Therefore, sleep seems more important than lack of
stress for maintaining optimal levels of visual attention.

Additional sleep improves attention in dunce mutants but
not in wild-type flies
Considering that sleep deprivation made flies more distractible, we
next asked whether increased levels of sleep had the opposite effect
on visual attention, making flies less distractible. The GABA-A
agonist (THIP) has recently been used to induce sleep inDrosophila
(Dissel et al., 2015; Yap et al., 2017). This increase in sleep was
shown to reverse memory deficits in Drosophila learning mutants
dunce and rutabaga (Dissel et al., 2015) and in aDrosophilamodel
of Alzheimer’s disease (Dissel et al., 2017). As dunce and rutabaga
mutants have previously been found to have defective attention
processes (van Swinderen and Brembs, 2010; van Swinderen,
2007), we wondered whether their attention deficits could also be
rescued by induced sleep.

We first quantified sleep in dunce and rutabaga mutants, and
found that both these mutants slept significantly less than wild-type
flies, with dunce flies sleeping less during the day and night, and
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rutabaga mutants sleeping less during the day (Fig. 7A,B). THIP
could then be effectively used to increase sleep in both wild-type
and mutant flies to similar levels (Fig. 7C,D). We next tested
whether inducing sleep affected the visual attention of wild-type
flies in our free-walking paradigm. THIP was fed to wild-type (CS)
flies for 2 days and removed 1 h prior to testing their behavior (the
same procedure used by Dissel et al., 2015). We performed a
within-group experiment (the same flies tested before and after
induced sleep) and a between-group experiment (aged-matched
flies, with or without induced sleep). In wild-type flies we observed
that distractibility (deviation away from the targets) decreased
slightly for those flies that that had been induced to sleep more, in
both experiments; however, this effect was not significant (Fig. 7E,
P=0.084 and P=0.187 for within group and between group
comparisons, by t-test).
We next tested whether increasing sleep altered attention in dunce

and rutabaga mutants. Under normal conditions (without
increasing sleep), dunce and rutabaga flies were significantly less
attentive towards the visual targets compared with wild-type flies, as
measured by increased target deviation (Fig. 7F, black bar compared
with light blue and yellow bars). Interestingly, increased sleep
following THIP administration was able to significantly reduce
target deviation in dunce mutants but not rutabaga mutants
(Fig. 7F), such that attention in dunce mutants with induced sleep
was not different from that of wild-type flies (Fig. 7F, dark blue bar
compared with black bar). Although THIP-induced sleep rescued
attention, it did not significantly alter other behaviors during
the experiment, including walking speed (Fig. S4A) and pausing
(Fig. S4B). Crucially, simple fixation and optomotor behaviors
were unchanged in THIP- versus non-THIP-treated dunce mutants
(Fig. S4C,D). Overall, our data suggest that increasing sleep may
improve attention in some learning mutants but not others, but does

not affect other behaviors related to locomotion or simple visual
responses.

DISCUSSION
Selective attention is crucial for discriminating important from
irrelevant stimuli in our environment, even for insects such as
Drosophila. The selection and suppression dynamics required for
attention seem to have emerged in brains at the same time at which
sleep became important for maintaining attention-related behaviors
(Kirszenblat and van Swinderen, 2015). In other words, some sleep
functions may have evolved to optimize attention. Here, we have
developed a free-walking attention paradigm which allowed us to
obtain a functional readout of the effects of sleep deprivation and
sleep induction on visual attention in Drosophila.

Selective attention must require a certain level of brain
coordination to deal with competing stimuli. This is because
different stimuli may be processed by different brain regions; in our
attention paradigm, the optomotor and fixation responses that
compete with each other have been found to be driven to some
degree by independent visual circuits (Bahl et al., 2013; Fenk et al.,
2014). Furthermore, attention-like behavior in flies is associated
with increased coherence between brain regions (Paulk et al., 2015),
suggesting greater synaptic coordination. If sleep is required to
maintain synaptic coordination across the brain, it follows that tasks
involving greater cognitive load may be more vulnerable to sleep
loss. Indeed, we found that although sleep-deprived flies showed
normal responses to simple visual stimuli, they had altered
responses to visual competition.

One might still ask whether sleep has a privileged role in
regulating selective attention relative to other higher-order cognitive
functions. Sleep loss is known to affect a variety of complex
cognitive behaviors in humans, such as learning and memory,
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creative thinking, and even the ability to speak clearly or to
appreciate humour (Harrison and Horne, 1997; Killgore, 2010;
Kendall et al., 2006). Attention is probably integral to these
complex processes because it allows us to filter out irrelevant
information and to select the right actions. In light of this, we would

suggest that selective attention is a key mechanism that is affected
by sleep loss, which disrupts the brain’s ability to prioritize
competing information.

The sleep deprivation effects we observed on attention seemed to
be remarkably robust under different environmental conditions, as
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flies were still more distractible following sleep deprivation in
conditions of heat stress, darkness and starvation. Interestingly,
although starvation and heat alone can promote waking in flies
(Ishimoto et al., 2012; Keene et al., 2010), they did not appear to
affect our attention readout, unlike the mechanical perturbation
method of sleep deprivation that is in standard use forDrosophila. It
is possible that because starvation and heat are environmental
stimuli that a fly encounters in natural situations, it has already
evolved physiological protective mechanisms to cope with these
kinds of stressors. This is supported by reports that heat stress
response factors can protect against sleep-deprivation-induced
lethality (Shaw et al., 2002), and that starvation disrupts sleep
homeostasis (Keene et al., 2010; Thimgan et al., 2010). Another
possibility is that starvation does not protect against sleep
deprivation per se, but may inhibit sleep need such that optimal
attention processes can be maintained in order to find food
effectively. Indeed, foraging mutants of Drosophila, which tend
to explore further for food, also appear to have a reduced need for
sleep and are resistant to memory impairments caused by sleep loss
(Donlea et al., 2012), whereas mutants selected for starvation
resistance exhibit increased sleep (Masek et al., 2014). More
recently, it was also discovered that sexual arousal in male flies can
suppress the need for sleep (Beckwith et al., 2017), and vice versa,
sleep can inhibit male sexual behavior (Chen et al., 2017). Overall,
these studies suggest that sleep need is flexible and may compete
with other survival needs such as food, sexual reproduction and the
need to escape unfavourable environments (e.g. high temperatures).
In future, it would be interesting to further investigate how a fly’s
environment influences its attention.
Interestingly, increasing sleep was able to normalize the attention

of dunce mutants, but did not affect wild-type flies or rutabaga
mutants. The finding that wild-type flies did not show improved
attention following induced sleep is consistent with previous reports
that increasing sleep does not improve learning and memory in
wild-type flies (Dissel et al., 2015). One interpretation is that
attention is already optimal in wild-type Drosophila. In contrast,
both rutabaga and duncemutants have previously been identified as
having attention deficits (van Swinderen, 2007), and our result
confirmed this finding in a free-walking attention paradigm.
However, it is not clear why inducing sleep would improve
attention specifically in dunce mutants, and not in rutabaga
mutants. It is possible that this may relate to their different sleep
phenotypes – duncemutants appear more severely sleep-deficient in
our DART system (including at night, which rutabaga mutants are
not) meaning that THIP had a greater ability to restore sleep to dunce
mutants. Related to this, it is possible that the attention deficits of
these mutants are due to different underlying causes. For example,
the mutants may have poor attention because they sleep less, or they
may sleep less because they have poor attention. This remains
unresolved.
How inducing sleep could improve attention, or other aspects of

cognition such as learning and memory, also remains unclear. There
is some evidence that the sleep-promoting agent THIP can interact
with specific GABA receptors to promote sleep in flies, via
known sleep-promoting neurons of the dorsal fan-shaped body
(Dissel et al., 2015), but can also modulate dopaminergic pathways
to facilitate memories (Berry et al., 2015). Interestingly, a recent
study found that increasing sleep promoted survival of wild-type
flies exposed to oxidative stress (Hill et al., 2018).Whether increasing
sleep in flies improves brain function through specific circuits, or by
general cellular mechanisms such as reducing reactive oxygen
species (ROS) needs to be further investigated. Our study opens up an

opportunity to understand the molecules, circuits and environmental
factors involved in the role of sleep in optimizing attention.
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Figure S1. Specifications of the visual arena.  A) Diagram of set-up (related to Figure 1A), 
indicating measurements in millimetres of LED panels (160 x 160mm), platform (85mm diame-
ter) and moat (200mm).  Platform and moat are 10mm in height (not shown).   B) Aerial view of 
the arena.  C) View of the entire set-up.  6 LED panels (Shenzen Sinorad, Medical Electronics, 
Shenzen, China) were joined to form a hexagon.  These panels have been discontinued, how-
ever the arena could also be built using a new model of bendable panels (which can be bent to 
form a circular arena) (SF2, Vuepix, Australia, https://www.vuepix.tv/vuepix-product/sf2/).  LED 
panels are controlled with software on the computer (LED Studio for our panels, or Nova LCT 
Software with Vuepix panels) via a sender card connected to the LED panels.    We used 
Buritrack software to track the fly’s movements and analyse the data (Colomb et al, 2012).  Any 
camera with 640 x 480 resolution or better (e.g. Logitech webcam) can be used.  A black 
curtain was draped around the arena during experiments such that flies were not distracted by 
the external surroundings.
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Figure S2.  Visual responses are modulated by flicker and grating frequency.  (A) 
Visual fixation in wild-type flies responding to fixation targets that were static (0 Hz) or flick-
ering at 0.5 Hz, 3 Hz, 7 Hz, or 16 Hz. Lower target deviation indicates greater fixation. n = 
14 flies for each condition. Asterisks indicate significance between adjacent data points 
(2-way ANOVA with Tukey’s correction).  (B) Optomotor response in wild-type flies respond-
ing to gratings that were stationary (0 Hz) or rotating at 0.5 Hz, 3 Hz, 7 Hz, or 16 Hz. Higher 
optomotor index (OI) indicates greater optomotor response. n = 10. Asterisks indicate signifi-
cance between adjacent points (A), significance via 2-way ANOVA with Tukey’s correction. * 
p < .05; ** p< .01; *** p< .001. Error bars show S.E.M.
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Figure S3.  Sleep deprivation effects on attention are independent of visual experi-
ence.  Target deviation during figure/ground discrimination in flies that were sleep deprived 
for 24 hrs in normal circadian conditions (light) or in 24 hrs of darkness (dark).  The visual 
stimuli were a 7 Hz flickering object (’target’) and a mid-luminance contrast grating (see 
methods). n>19 flies per data set.  *p=0.03,**p=0.01 by t-test. Error bars indicate the s.e.m.
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Figure S4. Pausing, walking speed, fixation and optomotor behaviour in dunce mutants 
following induced sleep.  Sleep was induced by administering THIP for 48 hours (see Figure 
6D) before testing in the visual arena, and compared to controls (dunce mutants without THIP 
treatment).  A,B) Walking speed (A) and number of pauses (B) in dunce mutants  with and 
without THIP treatment during the visual attention assay (same flies as Figure 6F).  C, D) Fixa-
tion (C) and optomotor  behaviour (D) in dunce mutants  with and without THIP treatment. N>30 
flies per experiment. No significant differences were observed between control and THIP treated 
flies (Mann-Whitney test). 
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