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High accuracy at low frequency: detailed behavioural classification
from accelerometer data
Jack Tatler1,*, Phillip Cassey1 and Thomas A. A. Prowse2

ABSTRACT
Accelerometers are a valuable tool for studying animal behaviour and
physiology where direct observation is unfeasible. However, giving
biological meaning to multivariate acceleration data is challenging.
Here, we describe a method that reliably classifies a large number of
behaviours using tri-axial accelerometer data collected at the low
sampling frequency of 1 Hz, using the dingo (Canis dingo) as an
example. We used out-of-sample validation to compare the predictive
performance of four commonly used classification models (random
forest, k-nearest neighbour, support vector machine, and naïve
Bayes). We tested the importance of predictor variable selection and
moving window size for the classification of each behaviour and
overall model performance. Random forests produced the highest
out-of-sample classification accuracy, with our best-performing
model predicting 14 behaviours with a mean accuracy of 87%. We
also investigated the relationship between overall dynamic body
acceleration (ODBA) and the activity level of each behaviour, given
the increasing use of ODBA in ecophysiology as a proxy for energy
expenditure. ODBA values for our four ‘high activity’ behaviours were
significantly greater than all other behaviours, with an overall positive
trend between ODBA and intensity of movement. We show that a
random forest model of relatively low complexity can mitigate some
major challenges associated with establishing meaningful ecological
conclusions from acceleration data. Our approach has broad
applicability to free-ranging terrestrial quadrupeds of comparable
size. Our use of a low sampling frequency shows potential for
deploying accelerometers over extended time periods, enabling the
capture of invaluable behavioural and physiological data across
different ontogenies.
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model, ODBA, Random forest

INTRODUCTION
The foundation of animal ecology is understanding how individuals
interact with their abiotic and biotic environment. These interactions
are increasingly being measured with bio-logging techniques,
where biological data are recorded remotely from devices attached
to animals. This approach has allowed researchers to answer
questions on everything from hunting tactics of puma (Williams
et al., 2014) to energy expenditure in cormorants (Gómez Laich
et al., 2011) and diving behaviour in whales (Ishii et al., 2017).

Consequently, the ability to continuously ‘observe’ free-ranging
animals has facilitated the development and exploration of entirely
new theories (Wilmers et al., 2015).

Accelerometers are a valuable tool in bio-logging research as they
provide quantitative measurements of animal behaviour and
physiology where direct observation is not possible or logistically
feasible. The use of accelerometers mitigates some of the major
challenges associated with studying the behaviour of wild animals,
such as extensive time investment, animal disturbance and observer
bias. Accelerometers measure acceleration (gravitational and
inertial) caused by animal movement in different planes, allowing
the development of classification models calibrated to predict
behavioural states such as resting, walking, swimming and eating
(e.g. Pagano et al., 2017). Further, there is a strong linear
relationship between body acceleration and energy expenditure in
many taxa, which is of particular interest to ecophysiologists
(Halsey and White, 2010; Wilson et al., 2006; Halsey et al., 2009).
Although accelerometry has been used to study animal movement
and behaviour for almost two decades (Yoda et al., 1999), recent
methodological advancements have increased its accessibility and
appeal to a broader scientific community.

Classifying animal behaviours to high-frequency acceleration
data presents a suite of new and complex challenges. One approach
is unsupervised machine learning, in which pattern-recognition
algorithms identify different states directly from the accelerometer
signatures. Unsupervised learning is intrinsically challenging so
algorithms are frequently used to ‘learn’ the relationship between
acceleration data and behaviour using a model-training dataset that
is acquired from direct observation. The ability of the algorithm to
interpret this relationship depends largely on the variables used to
characterise the raw acceleration data. Several attempts to simplify
or streamline this approach have been made, with varying success.
Ladds et al. (2017) introduced a super-machine-learning method
that identified six behaviours in four species of pinniped with
approximately 73% accuracy. They used a high sampling frequency
(25 Hz), large training dataset (∼90,000 individual data points) and
a very large set of input variables (n=147). In contrast, when using
fewer input variables and the relatively simple approach (k-nearest
neighbour), McClune et al. (2014) classified four behaviours in
Eurasian badgers (Meles meles) with an overall classification
accuracy of 89%. In general, it is expected that the classification
accuracy of a model will increase when using: (a) higher sampling
frequencies; (b) more training data; and (c) broader behaviour
categories (i.e. fewer behaviours to be classified). The consequence
of following these criteria is not only increased computational time
and difficulty, but loss of behavioural diversity and decreased
deployment time on free-ranging animals due to memory
constraints, i.e. the exact opposite of what researchers are aiming
for. Reducing the sampling frequency would greatly increase
deployment time (e.g. from days to months) whilst also decreasing
computational effort. However, it is challenging to accuratelyReceived 3 May 2018; Accepted 10 October 2018
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classify a broad range of behaviours using very low sampling rates.
If we can create a simple model that overcomes the aforementioned
hurdles, we will greatly improve integration with other fields, such
as movement ecology and physiology.
One major weakness in applying machine-learning algorithms to

acceleration data is that, for accurate and reliable identification of
different behaviours, a period of observation is required to ‘train’ the
algorithm. Therefore, it has only been possible to use this approach on
species that can be observed whilst simultaneously recording their
acceleration. Campbell et al. (2013) made an important step in
overcoming this problembydemonstrating the potential of ‘surrogacy’,
whereby a classification model was trained with behavioural
observations from one species, and accurately predicted these
behaviours in other species that possessed similar morphometrics.
In this study, we describe an approach to the classification of

behaviours using accelerometer data collected at the very low
sampling frequency of 1 Hz.We used the dingo (Canis dingoMeyer
1793), a medium-sized prototypical quadruped, as an example
because it readily exhibits behaviours akin to its wild conspecifics.
We used out-of-sample validation to compare the predictive
performance of four commonly used classification models
(random forest, k-nearest neighbour, support vector machine and
naïve Bayes). We then tested the importance of predictor variables
for the classification of each behaviour as well as overall model
performance. We expected behaviours that were functionally
similar, such as lateral and sternal recumbency, would produce
similar acceleration signatures and thus be more difficult to classify
accurately. Given the increasing use of overall dynamic body
acceleration (ODBA) as a measure of activity and as a proxy for
energy expenditure (Wilmers et al., 2015), we anticipated that
ODBA would show a strong, positive relationship with intensity of
movement.

MATERIALS AND METHODS
Data collection
Captive observations were conducted at Cleland Wildlife Park,
Adelaide (34.9667°S, 138.6968°E) from August 2016–March 2017
under a University of Adelaide Animal Ethics permit (S-2015-
177a).We used three captive-born adult male dingoes (c. 19 kg) that
were kept on permanent display in a 2500 m2 outdoor enclosure.
We fitted each dingo with a tri-axial accelerometer (LISD2H, ST
Microelectronics, USA) built into a custom-made GPS collar
(Telemetry Solutions, Concord, CA, USA). The tri-axial
accelerometer was programmed to sample changes in acceleration
at 1 Hz (one sample per second) and orientated so that the x-, y- and
z-axes recorded acceleration along the sway, heave and surge
planes, respectively (Fig. 1). Dingo movement was recorded
continuously with the accelerometer and visually with a
camcorder at 30 frames s−1 (Sanyo Dual Camera Xacti CG10
HD) for eight sessions of ca. 30 min each. Behaviours directly
observed from the video footage were manually annotated into a
Microsoft Excel spreadsheet by one observer (J.T.) and matched to
the corresponding accelerometer data via concurrent timestamps.
We synchronised the accelerometer and camera clocks by setting
them using the same laptop computer (internet time server) on the
morning of each session. Prior to manual annotation, we consulted
the timestamp from auxiliary footage (iPhone 8 also set to the
internet time server, 30 frames s−1) to confirm the syncing of our
devices. Although a handling keeper was present at all times, the
focal animal (only ever one dingo per session) was unrestricted and
conducted behaviours largely ad libitum. Prior exposure to
commercial dog collars ensured that the dingoes did not act

atypically during the sampling sessions (Hayley Wells, Cleland
Wildlife Park, personal communication).

Determining behaviours from acceleration values requires a
sampling frequency that is at least twice as fast as the observed
behaviour (Nyquist sampling theorem). Thus, our core criteria for
what constituted a behaviour was a repeated movement that
consistently lasted two or more seconds. We observed 14 such
behaviours and annotated them to 9360 accelerometer data points
(equivalent to 156 min) on a per-second basis (Table S1). Quick
transitory movements, between recognised behavioural states, were
assigned to the behaviour (pre- or post-transition) that was mostly
common across the 30 frames s−1. We excluded any behaviours that
had sample sizes <20 data points or were clearly observed to be
influenced by physical interaction with the keeper. Based on direct
observation of dingo movement, each behaviour was broadly
assigned to an activity level: low, medium or high (Table 1).

Variable derivation
The ability of classification models to distinguish between
behavioural states depends partly on the predictor variables used
to characterise the raw acceleration signals. We adopted a
comprehensive approach to selecting predictor variables by
calculating an extensive list of derived variables (n=66) from the
x-, y- and z-axes. These ranged from simple metrics such as the
mean and standard deviation of an axis, to more complex, derived
variables such as waveform length and signal magnitude area
(Table 2). All predictor variables were calculated using a moving
window centred on each data point (see detailed description given in
‘Model evaluation’).

Classification modelling
We used supervised machine-learning techniques to fit
classification models that used different combinations of the
predictor variables. In supervised learning, an algorithm is
employed to learn the relationship between a given set of input
and output variables (our predictor variables and manually assigned
behaviours, respectively) so that, when provided with a new set of
input variables, it can predict what the output variables will be. With
the goal of finding a reliable method that would be straightforward
to implement, we compared four supervised machine-learning

Fig. 1. Dingo wearing a global positioning system (GPS)-accelerometer
collar. Arrows indicate axis orientation of the accelerometer (x, sway or
side-to-side; y, heave or up-and-down; z, surge or back-and-forth).
Photo credit: Casey O’Brien.

2

RESEARCH ARTICLE Journal of Experimental Biology (2018) 221, jeb184085. doi:10.1242/jeb.184085

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/doi/10.1242/jeb.184085.supplemental


algorithms using the R software environment for statistical and
graphical computing (R Core Team 2016: http://www.R-project.
org/). The k-nearest neighbour (k-NN; R library ‘class’; Venables
and Ripley, 2002) is a simple algorithm that employs a number of
nearest neighbours (defined by the parameter k) to contribute to the
classification of a sample. The majority of behaviours within k
observations surrounding the data point being classified determines
the behaviour of that data point (Coomans and Massart, 1982).
Naïve Bayes (R library ‘e1071’, https://rdrr.io/rforge/e1071/) is a

probabilistic classifier that computes the conditional probabilities of
a categorical class variable given independent predictor variables
using Bayes’ rule. A support vector machine (SVM: R library
‘e1071’) constructs an optimal hyperplane to separate patterns, or
classes, in the data (Vapnik, 1999). Non-linear classification
is achieved using kernel functions (chosen a priori), which
nonlinearly map the input vectors into a very high-dimensional
feature space. A random forest (RF; R library ‘randomForest’, Liaw
and Wiener, 2002) is an ensemble method for classification in
which a set of decision trees are constructed that are then used to
classify a new instance according to the majority vote (Breiman,
2001). The number of decision trees needed generally increases
with the number of predictor variables used. Each of these
modelling approaches are widely used, computationally
inexpensive, and represent different degrees of complexity to
pattern recognition and classification.

Model evaluation
For each machine-learning algorithm, we evaluated a candidate set
of models that ranged in complexity from a ‘null’model containing
just the x-, y- and z-axes (n=3 variables) to the most complex model
(n=69 variables; Table S2). We tested six different moving windows
for variable derivation (4, 8, 16, 32, 64 and 128 s). We also explored
how the predictive ability of our four models was affected when we
employed a different number of nearest neighbours (1, 3, 5, 7 and 9;
k–NN), kernels (linear, radial and polynomial; SVM) and number of
classification trees (500, 1000, 2500, 5000, 7500 and 10,000; RF).
To measure the predictive performance of each model, we averaged
the out-of-sample accuracy (see below) achieved across 10 repeated
training-test splits, in each case using a random 90% of the data from
each behaviour to train our model and the remaining 10% for
testing.

For each test datum, predicted behaviours were labelled as true
positive (TP) if they correctly matched the actual behaviour, true
negative (TN) if they correctly identified as a different behaviour,
false positive (FP) if the behaviour was incorrectly identified, and

Table 1. Descriptions of all 14 behaviours that met the selection criteria

Activity Behaviour Description of movement

Low Lat. lying inactive Recumbent on flank with head down on the
ground

Stern. lying inactive Recumbent on sternumwith head down on the
ground

Lat. lying alert Recumbent on flank with head and neck
upright

Stern. lying alert Recumbent on sternum with head and neck
upright

Sitting Sedentary, rump on ground, front legs held
straight under body

Standing Sedentary, with all four legs held straight
under the body

Medium Drinking Body in standing position, head lowered; rapid
jaw movements

Lat. lying groom Recumbent on flank with rhythmic head
movement

Searching Omni-directional movements, head low and
focussed on ground

Walking Symmetric diagonal gait at a slow pace
Collar discomfort Standing/walking while jerking neck from side

to side
High Trotting Symmetric diagonal gait; faster than a walk

Playing High-intensity interactions with conspecifics
Running Gallop-type movement at a very fast pace

Activity classes were assigned post hoc, based on direct observation of
behaviours and intensity of movement. Lat., lateral; Stern., sternum.

Table 2. Descriptions of the predictor variables that were used to fit four different classification algorithms in an attempt to classify
dingo behaviours

Parameter Description

Axes x (side to side), y (back and forth), z (up and down)
s.d. Measures the spread of the signal for each axis or statistic
Magnitude Magnitude of acceleration:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

Signal magnitude area A measure of movement intensity within all three axes:

SMA ¼ 1
N

XN
i¼1

jxij þ
XN
i¼1

jyij þ
XN
i¼1

jzij
 !

Waveform length
The total amount of variance within the signal through the cumulative measure of amplitude, frequency and duration:

WL ¼ 1
N

XN�1

i¼1

jxiþ1 � xi j þ
XN
i¼1

jyiþ1 � yij þ
XN
i¼1

jziþ1 � zij
 !

Kurtosis
Measure of weight of the tails relative to a normal distribution

Skew Measure of the lack of symmetry of the distribution
Correlation Degree and type of pairwise relationship between the three axes
Dynamic body acceleration (DBA) Static acceleration, calculated by subtracting a running mean from the raw acceleration data from each axis
Overall dynamic body acceleration The absolute sum of DBA for each axis:

ODBA = |DBA · x| + |DBA · y| + |DBA · z|
Vectorial dynamic body acceleration Vector of the DBA:

VeDBA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DBA � x2 þ DBA � y2 þ DBA � z2

p
Difference The difference between successive values on each axis
Absolute values Absolute value of the chosen parameters
Mean Mean, calculated over a moving window, of the chosen parameters
Range Minimum and maximum values calculated over the moving window
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false negative (FN) if they incorrectly identified as a different
behaviour. We evaluated the predictive ability of our models using
three measures of accuracy: the true skill statistic (TSS; Eqn 1),
Matthew’s correlation coefficient (MCC; Eqn 2) and the F-measure
(Eqn 3). The TSS was introduced by Allouche et al. (2006) as an
improvement to the widely used kappa, whereby it not only
accounts for both omission and commission errors, but is not
affected by the sample size of each class:

TSS ¼ TP

ðTPþ FNÞþ
TN

ðTNþ FPÞ � 1: ð1Þ

Similarly, we chose MCC because it is a balanced measure of
accuracy when sample sizes are unequal and has been more widely
used in bioinformatics than TSS:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞp :

ð2Þ
The TSS and MCC both return a value between −1 (total

disagreement between prediction and observation) and +1 (perfect
prediction), with a value of 0 indicating a prediction no better than
random chance. We included the F-measure, calculated as the
harmonic mean of precision and sensitivity, because it is a relatively
simple statistic that has been widely used in the literature, thus
placing our results in the context of previous studies:

F-measure ¼ 2� TP

ð2� TPÞ þ FPþ FN
: ð3Þ

We calculated three additional statistics that provide added insight
into model performance. These were: precision, denoting the
proportion of positive classifications that were correctly identified
(Eqn 4); sensitivity, which is the probability that a behaviour will be
correctly classified (Eqn 5); and specificity, the probability that a
behaviour has been correctly classified as a different behaviour
(Eqn 6):

Precision ¼ TP

TPþ FP
; ð4Þ

Sensitivity ¼ TP

TPþ FN
; ð5Þ

Specificity ¼ TN

TNþ FP
: ð6Þ

Classification models produce a corresponding probability to
their behavioural predictions, to which we apply a threshold
criterion (0.1–0.9) that determines the rate of TP, TN, FP or FN. The
threshold is usually used to fine-tune model parameters such as
sensitivity and specificity. Therefore, it is important to choose a
threshold based on the research questions and consequences
associated with practical application of the model. Given that the
intended practical application of this research is to predict
behaviours of free-ranging animals, we chose a threshold that
would maximise our TSS score whilst minimising the amount of
unclassified data points.

Overall dynamic body acceleration
Dynamic body acceleration (DBA) was calculated by subtracting a
running mean from each acceleration axis to give acceleration
values occurring from inertia (i.e. movement). We chose a running

mean of 4 s (i.e. four data points) because it was roughly half the
length of our most active behaviour (running) and, thus, we
minimise any loss of resolution for each behaviour. The absolute
value for each axis (DBA) was summed to give ODBA, an overall
value for dynamic acceleration. To determine whether ODBA
differed between the observed behaviours, and whether there was a
positive relationship between ODBA and activity level, we
conducted an ANOVA and Tukey’s test for paired comparisons.
All analyses were conducted in the R software environment for
statistical and graphical computing (http://www.R-project.org/).

RESULTS
Across the four machine-learning algorithms that we tested, the RF
classification models produced superior out-of-sample validation
scores (Fig. 2). The top 50 classification models were all achieved
using the RF algorithm. Despite differing considerably in their
complexity (Table S3), the predictive capacity of these models was
similar (Δ mean TSS≤0.04). Our ‘best’ model, which ranked third
overall, was selected due to its low number of predictor variables (26
of a possible 69) and classification trees (1000), in conjunction with
returning the lowest range in TSS scores between the 14 behaviours
(Table 3). This selected RF model predicted all 14 dingo behaviours
with high accuracy (mean TSS=0.87).

Comparisons of different RF models indicated that the predictor
variable set used had the strongest influence on the ability of RFs to
predict dingo behaviours (Fig. 3). When models were fitted with just
the x-, y- and z-axes (predictor variable set 1), they produced the
lowest predictive accuracy. The RF models that were constructed
using a moving window of ≥16 s were substantially better at
classifying behaviours, whereas varying the number of classification
trees had little effect on model accuracy (Fig. 3). The z-axis, which
measured surge movement, was highly variable between behaviours
and therefore was particularly important for classification (Fig. 4).
Further, predictors that described the variation (s.d.) and characterised
the distribution of sway movements proved to be valuable for
classifying behaviours (Fig. 5). We attempted to refine the model
further by excluding the variables that contributed least to the model
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Fig. 2. The predictive ability [true skill statistic (TSS) score] of the best
naïve Bayes, support vector machine (SVM), k-nearest neighbour (k-NN)
and random forest (RF) models (no threshold). Each boxplot shows the
range of TSS scores from the 14 behaviours classified by each algorithm.
Lower and upper hinges correspond to the first and third quartiles, and the
whiskers extend from the hinge to no more than 1.5× interquartile range (IQR).
Outliers are represented individually by dots.
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(mean decrease in accuracy ≤60%; n=8) but found a reduction in
the ability of the model to identify dingo behaviours (mean
values: TSS=0.85, MCC=0.87, F-measure=0.88, precision=0.91,
sensitivity=0.86 and specificity=0.99).
Overall, our selected model performed better at classifying low-

intensity, stationary behaviours. Specifically, all behaviours where

dingoes were lying down were identified with very high accuracy
(TSS>0.90). In contrast, upright and more dynamic movements
such as trotting and running were classified less well (TSS=0.46 and
0.62, respectively). We observed high specificity for each of our
behaviours (0.92–1.00) and thus our selected model was robust to
misclassification. Although the majority of behaviours exhibited a

Table 3. Performance of our selected random forest (RF) model at predicting 14 different behaviours observed in captive dingoes

Behaviour TSS MCC F-measure Precision Sensitivity Specificity

Lat. lying inactive 0.99 0.99 0.99 0.99 0.99 1.00*
[0.98, 0.99] [0.98, 0.99] [0.98, 0.99] [0.98, 0.99] [0.98, 0.99] [1.00, 1.00]

Stern. lying inactive 0.90 0.94 0.94 0.99 0.90 1.00*
[0.88, 0.92] [0.93, 0.95] [0.92, 0.95] [0.98, 0.99] [0.88, 0.92] [1.00, 1.00]

Lat. lying alert 0.96 0.98 0.98 0.99 0.96 1.00*
[0.95, 0.97] [0.97, 0.98] [0.97, 0.98] [0.99, 1.00] [0.95, 0.97] [1.00, 1.00]

Stern. lying alert 0.96 0.97 0.97 0.98 0.97 1.00*
[0.96, 0.97] [0.97, 0.97] [0.97, 0.98] [0.98, 0.98] [0.96, 0.97] [1.00, 1.00]

Sitting 0.91 0.95 0.95 1.00* 0.91 1.00*
[0.89, 0.92] [0.94, 0.95] [0.94, 0.95] [0.99, 1.00] [0.89, 0.92] [1.00, 1.00]

Standing 0.85 0.84 0.91 0.88 0.93 0.92
[0.85, 0.85] [0.84, 0.85] [0.90, 0.91] [0.88, 0.89] [0.93, 0.94] [0.91, 0.92]

Drinking 0.97 0.97 0.96 0.96 0.98 1.00*
[0.96, 0.99] [0.95, 0.98] [0.95, 0.98] [0.94, 0.98] [0.96, 0.99] [1.00, 1.00]

Lat. lying groom 0.97 0.97 0.97 0.97 0.97 1.00*
[0.95, 0.98] [0.96, 0.98] [0.96, 0.97] [0.96, 0.98] [0.95, 0.98] [1.00, 1.00]

Searching 0.91 0.90 0.91 0.90 0.92 0.99
[0.91, 0.91] [0.90, 0.90] [0.91, 0.91] [0.90, 0.91] [0.92, 0.93] [0.99, 0.99]

Walking 0.76 0.76 0.81 0.81 0.81 0.95
[0.76, 0.77] [0.76, 0.76] [0.81, 0.81] [0.80, 0.81] [0.81, 0.82] [0.95, 0.95]

Collar discomfort 0.75 0.85 0.83 1.00 0.75 1.00
[0.70, 0.80] [0.82, 0.88] [0.79, 0.87] [1.00, 1.00] [0.70, 0.80] [1.00, 1.00]

Trotting 0.46 0.57 0.57 0.72 0.47 0.99
[0.44, 0.48] [0.55, 0.59] [0.55, 0.59] [0.70, 0.75] [0.45, 0.49] [0.99, 0.99]

Playing 0.88 0.91 0.91 0.95 0.89 1.00*
[0.88, 0.89] [0.91, 0.92] [0.91, 0.92] [0.94, 0.96] [0.88, 0.89] [1.00, 1.00]

Running 0.62 0.66 0.67 0.73 0.62 0.99
[0.59, 0.64] [0.65, 0.68] [0.65, 0.69] [0.72, 0.74] [0.60, 0.65] [0.99, 0.99]

We used six widely used techniques for quantitatively assessing the model’s predictive ability, at a threshold of 0.3. Our selected model was fit using predictor
variable set 4, a moving window of 64 s, and number of classification trees of 1000. 95% confidence intervals are presented in square brackets beneath
each metric. TSS, true skill statistic; MCC, Matthew’s correlation coefficient; Lat., lateral; Stern., sternum.
*Denotes values that scored 1.00 after rounding to two decimal places.
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Predictor variable set: 1 2 4 7 9
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Fig. 3. The importance of the predictor variable set on the predictive ability.Mean TSS score from 10-fold out-of-sample validation of RFmodels when fit with
(A) an increasing moving windowand fixed number of classification trees (ntree=1000; as per selectedmodel), and (B) an increasing number of classification trees
but a fixed moving window of 64 s (as per selected model).
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sensitivity above 0.90, low sensitivity for trotting and running
indicated that the model had difficulty with positive classification of
these behaviours (Table 3).
A threshold of 0.3 produced the model with the optimal balance

between sensitivity and specificity (TSS score) and unclassified data
points (Fig. S1). At this threshold, the overall number of incorrectly
classified behaviours was very low, with higher classification errors
occurring in the more active behaviours. Misclassifications produced
by the model tended to confuse closely related behaviours; for
example, ‘trotting’ most often misclassified as ‘walking’, and
‘running’ misclassified as ‘trotting’ (Table S4).

Post hoc comparisons using Tukey’s test indicated that the mean
ODBA for each of our highly active behaviours was significantly
greater than all behaviours except ‘collar discomfort’ (Table S5).
When sorted by mean ODBA, all 14 behaviours grouped into their
pre-assigned activity level, displaying a positive relationship
between ODBA and animal activity (Fig. 6).

DISCUSSION
Accurate classification across a range of behaviours has been a great
challenge for the majority of accelerometry studies. Our study is the
first to use accelerometry to accurately classify a broad range of
behaviours for an apex predator, at the very low sampling frequency
of 1 Hz. Employing a comprehensive, yet strategic, approach to
fitting and selecting our best model allowed us to address a number
of challenges associated with translating raw acceleration data into a
meaningful and biologically relevant format.

As expected, the choice of predictor variables influenced
classification accuracy. Several other studies provide evidence for
the importance of predictor variable selection. For example,
Alvarenga et al. (2016) achieved an overall model accuracy of
∼85% (across five behaviours) when using 44 derived predictor
variables, whereas Martiskainen et al. (2009) used 28 relatively
simple predictor variables and produced a mean accuracy across eight
behaviours of ∼94%. Although there was only a minor change in
overall model accuracy between the larger predictor variable sets, the
model’s predictive ability for individual behaviours was influenced
considerably by choice of predictor variables. Changes in
acceleration across each axis depended largely on the type of
movement and, therefore, a single axis (or predictor variable) may
better capture the acceleration signature of one behaviour over
another. Graf et al. (2015) reported the heave (up and down) axis to be
particularly important for classifying different behaviours in Eurasian
beavers (Castor fiber), while Alvarenga et al. (2016) found that, in
sheep (Ovis aries), the surge (back and forth) axis contributedmost to
the model. Given that some predictor variables will be better suited to
assist the classification model in distinguishing certain behaviours, a
priori selection of predictor variables should be used, where
decisions are driven by the behaviours of interest.

Acceleration during movement can change over very short time
periods and is therefore commonly measured at infrasecond
frequencies (between 8 and 100 Hz). Measuring acceleration at high
frequencies increases computational effort for fitting classification
models, limits the deployment period of accelerometers due to
memory constraints, and may be unnecessary for behavioural
classification in many instances. We are the first to show that a large
number of distinct behaviours (14) can be classified using tri-axial
accelerometer data derived from an unconventionally low sampling
frequency of 1 Hz. There are few instances in the literature where an
equally low sampling frequency was used, which is surprising given
that several studies report only minor decreases in classification
accuracy when down-sampling, for example, from 64 to 8 Hz (Wang
et al., 2015), or 25 to 10 Hz (Alvarenga et al., 2016). However, there is
a lower limit to sampling frequency that can be used to classify certain
behaviours. In our study, the classification accuracy for our most active
behaviours was not high. Given that the more active behaviours, such
as running and playing, are swift movements performed over short
time periods, our sampling frequencymay not have allowed enough of
the acceleration signature to be captured in order to adequately train
the model. This issue is highlighted in small species, owing to
their tendency for rapid movements of short duration (Hammond et al.,
2016). Hammond et al. (2016) attached accelerometers to chipmunks
(body mass c. 50 g) and found the lowest sampling frequency that

0

25

50

75

100

125

150

−400 −200 0 200 400
z-axis

s.
d.

 o
f x

-a
xi

s
Playing
Lateral lying alert
Drinking

Fig. 4. Clustering of data points demonstrate the importance of predictor
variables for classifying behaviours in our selected RF model. One
behaviour from each activity level was chosen as an example: Lateral lying
alert=low activity, drinking=medium activity and playing=high activity.

z max.
z min.
s.d. z
y min.
x min.
Kurt. q
y max.
s.d. y
Skew z
x
x max.
Kurt. z
Cor. yz
Skew q
Mean y
Kurt. y
Skew y
Cor. xy
Cor. xz
y
Kurt. x
Skew x
Mean z
Mean x
s.d. x
z

40 60 80 100 120 140
Mean decrease in accuracy

Fig. 5. Variable importance plot from our selected RF model. The
importance plot provides a relative ranking of all 26 predictor variables that
were used to fit our selected model, with larger values indicating variables that
contributed more to the overall accuracy, or predictive ability, of the model. The
mean decrease in accuracy for a variable is the normalised difference of the
classification accuracy for the out-of-bag data for a given variable, and the
classification accuracy for the out-of-bag data when the values of the given
variable have been randomly permuted. Kurt., kurtosis; Cor., correlation.

6

RESEARCH ARTICLE Journal of Experimental Biology (2018) 221, jeb184085. doi:10.1242/jeb.184085

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/doi/10.1242/jeb.184085.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.184085.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.184085.supplemental


resulted in negligible decreases in model accuracy to be 20 Hz. Our
study provides evidence that a very low sampling frequency can be
used to classify a range of behaviourswith high accuracy, in amedium-
sized animal.
In our study, the expectation that functionally similar behaviours

would most often misclassify as each other was only realised for the
highly active behaviours. This is best explained by high intra-
behaviour variation and inter-behaviour overlap within the axes.
If classifying high-intensity behaviours with high accuracy is crucial,
it may be necessary to increase the resolution of the acceleration
signature by using a higher sampling frequency, but at a cost to
deployment time. Our selectedmodel performed extremelywell (low
misclassification rate) at classifying low-intensity functionally
similar behaviours such as different resting postures. In studies
where misclassification is particularly undesirable, it is common to
group behaviours into broader classes, such as ‘active’ and ‘inactive’,
which has the benefit of increasing classification accuracy but at
the cost of behavioural diversity (e.g. Shamoun-Baranes et al., 2012).
We chose a model that would identify a range of highly active
behaviours, despite relatively low classification accuracy. We then
managed ourmisclassification errors (model sensitivity) by choosing
a threshold that would balance the number of unclassified and
misclassified sampleswhilst retaining high overallmodel accuracy. If
we were to apply our selected model to accelerometer data from free-
ranging dingoes, we propose increasing the threshold from 0.3 to 0.5
for three reasons. Firstly, at 0.5 our overall model accuracy remains
high at over 80%; secondly, our datawill not be swamped by errors of
omission; and, lastly, we are not overly concerned with a minor
increase in misclassifications because the majority of behaviours will
be misclassified to a functionally similar movement with comparable
ODBA values. Overall, our methodological approach and resulting
classification model is robust, and can readily be adapted to answer
questions about different study systems.
Since Wilson et al. (2006) first presented evidence to suggest a

positive correlation between ODBA and activity in cormorants, the

use of accelerometry as a tool to remotely measure physiological
traits such as energy expenditure and energy–time budgets has
exploded. We also found a positive relationship between animal
activity level and ODBA. Highly active behaviours exhibited
significantly higher mean ODBA values than all low and medium
behaviours. However, our results suggest that some caution should
be taken when using ODBA as a proxy for energy expenditure.
One of our highest ODBA scores came from the behaviour
‘collar discomfort’, which was typified by low overall body
movement but acute movement of the accelerometer device due to
quick side-to-side actions of the head. The result was ODBAvalues
indistinguishable from ‘trotting’, an energetically demanding and
ecologically important behaviour (Reilly et al., 2007). Energy and
time budgets are of paramount importance for our understanding of
how animals interact with their environment, especially for apex
predators given their critical role in maintaining the structure of
ecological communities (Fretwell, 1987). A recent study by Wang
et al. (2015) used accelerometry to understand how an apex predator
modulated their energy budget by examining foraging strategies
(akin to ‘searching’ in our study), and in doing so they highlighted
the potential benefits for conservation initiatives and
human–wildlife conflict resolution. We extend the potential of
future research by showing that classifying ecologically relevant
behaviours whilst maintaining their aforementioned relationship
with ODBA is possible even with acceleration data sampled at
a very low frequency. The implication is that we can deploy
accelerometers over much longer time periods to capture invaluable
behavioural and physiological data across different life history
stages of free-ranging animals.

Accelerometry is an exciting tool that is transforming the study of
animal behaviour and physiology. The use of accelerometers to
remotely classify behaviours of free-ranging animals has
appreciable potential. However, prevailing methods limit our
ability to establish meaningful ecological conclusions due to the
challenge of classifying a diversity of behaviours over a significant
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period of time. Our approach addresses these constraints and has
applicability to free-ranging terrestrial quadrupeds of comparable
size. We propose that our approach using the RF model can be
directly applied to accelerometer data from other members of the
family Canidae, given their shared body type and consistent style of
locomotion (Flynn et al., 1988). Canids are a diverse lineage whose
members are ecologically and economically important the world
over; for example, red wolves (Canis rufus) are threatened with
extinction (Kelly et al., 2008), gray wolves (Canis lupus) are
keystone predators (Estes et al., 2011), and red foxes (Vulpes vulpes)
are invasive pests that cause millions of dollars of damage each
year in Australia alone (McLeod, 2004). Through building a
classification model that exhibits high predictive performance at
low frequency and across a large number of ecologically relevant
behaviours, we increase the accessibility of accelerometer-based
behavioural research and support much-needed integration with the
fields of animal physiology and movement ecology.
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Supplementary Information 

Table S1. Number of seconds/ acceleration data points that the focal dingo was observed 

doing each behaviour, summed over eight sampling sessions. 

Behaviour 

Individual dingo 

Total Dingo 1 Dingo 2 Dingo 3 

Lat. lying inactive 115 38 14 167 

Stern. lying inactive 45 20 0 65 

Lat. lying alert 2 0 113 115 

Stern. lying alert 194 245 481 920 

Sitting 221 41 28 290 

Standing 1703 791 1230 3724 

Drinking 0 15 23 38 

Lat. lying groom 0 0 58 58 

Searching 431 253 332 1016 

Walking 763 611 569 1943 

Collar discomfort 28 16 0 44 

Trotting 150 129 139 418 

Playing 62 215 16 293 

Running 122 82 65 269 

Total 3836 2456 3068 9360 
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Table S2. Nine sets of predictor variables were generated to test the effect of variable choice 

and number on model accuracy.  

Table S3. Top 50 best performing Random Forest models, ranked by TSS score. Moving 

window centred on each data point. Rank 3 (in bold) was selected to be our best model 

because it possessed high evaluation metrics when using a low number of predictor variables 

and decision trees (i.e. most parsimonious model with high TSS), and had the lowest range of 

accuracy measures across the 14 behaviours.
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Click here to Download Table S2 

Click here to Download Table S3 
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Table S4. Confusion matrix comparing the predicted behaviours (rows) from our best random forest model to true behaviours (columns), 

confirmed by video recordings. True positive (TP) classifications are denoted in bold and threshold was set at 0.3.  
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Lat. lying inactive 17 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stern. lying inactive 0 6 0 0 0 0 0 0 0 0 0 0 0 0 

Lat. lying alert 0 0 10 0 0 0 0 0 0 0 0 0 0 0 

Stern. lying alert 0 1 0 85 0 3 0 0 0 0 0 0 0 0 

Sitting 0 0 0 0 25 0 0 0 0 0 0 1 0 0 

Standing 0 0 1 0 0 344 0 0 2 26 0 6 0 4 

Drinking 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

Lat. lying groom 0 0 0 0 0 0 0 6 0 0 0 0 0 0 

Searching 0 0 0 2 0 2 0 0 93 8 0 0 0 3 

Walking 0 0 0 0 3 14 1 0 4 154 0 14 1 3 

Collar discomfort 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

Trotting 0 0 0 0 0 0 0 0 0 2 0 17 1 1 

Playing 0 0 0 0 0 0 0 0 1 0 0 0 26 0 

Running 0 0 0 0 0 1 0 0 0 1 0 2 0 14 

Not classified* 0 0 0 0 0 2 0 0 0 0 0 1 0 1 

* enotes omission, where the model did not assign any behaviour to the input data at our chosen threshold of 0.3.
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Table S5. Confusion matrix displaying the paired comparisons of the Tukey’s HSD test. P-values are presented above the diagonal and 

difference between the means is presented below the diagonal. Row and column numbers correspond to: Lat. lying inactive (1), Stern. lying 

inactive (2), Lat. lying alert (3), Stern. lying alert (4), Sitting (5), Standing (6), Drinking (7), Lat. lying groom (8), Searching (9), Walking (10), 

Collar discomfort (11), Trotting (12), Playing (13), Running (14). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1.00 0.997 0.255 0.174 <0.001 0.078 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

2 4.39 1.00 0.987 0.933 0.095 0.376 0.027 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3 11.00 6.60 1.00 0.922 0.07 0.538 0.038 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4 17.85 13.46 6.85 1.00 <0.001 0.709 0.038 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

5 21.91 17.52 10.92 4.06 0.276 0.917 0.192 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

6 34.76 30.36 23.76 16.91 12.84 0.845 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

7 44.61 40.22 33.61 26.76 22.70 9.86 1.00 0.505 0.104 <0.001 <0.001 <0.001 <0.001 

8 53.86 49.47 42.86 36.01 31.95 19.10 9.25 0.761 0.168 <0.001 <0.001 <0.001 <0.001 

9 74.87 70.47 63.87 57.02 52.95 40.11 30.26 21.01 0.123 <0.001 <0.001 <0.001 <0.001 

10 83.98 79.59 72.99 66.14 62.07 49.23 39.38 30.13 9.12 <0.001 <0.001 <0.001 <0.001 

11 165.03 160.63 154.03 147.18 143.11 130.27 120.42 111.17 90.16 81.04 1.00 <0.001 <0.001 

12 175.82 171.43 164.82 157.97 153.91 141.06 131.21 121.96 100.95 91.83 10.79 <0.001 <0.001 

13 237.80 233.41 226.81 219.95 215.89 203.05 193.19 183.94 162.94 153.82 72.78 61.98 <0.001 

14 374.32 369.93 363.32 356.47 352.41 339.57 329.71 320.46 299.45 290.34 209.29 198.50 136.52 
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Figure S1. The mean predictive ability (TSS) of our best model weighted by the number of samples that could not be classified at each  

threshold. The dotted line indicates the threshold we assigned to our model. Mean TSS scores were calculated from our ten-fold out-of-sample  

validation.  
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