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Pentamidine rescues contractility and rhythmicity in a Drosophila
model of myotonic dystrophy heart dysfunction
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Nicolas Charlet-Berguerand4, Ruben Artero1,2,* and Beatriz Llamusi1,2

ABSTRACT
Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will
develop cardiac abnormalities at some point during the progression of
their disease, the most common of which is heart blockage of varying
degrees. Such blockage is characterized by conduction defects and
supraventricular and ventricular tachycardia, and carries a high risk of
sudden cardiac death. Despite its importance, very few animal model
studies have focused on the heart dysfunction in DM1. Here, we
describe the characterization of the heart phenotype in a Drosophila
model expressing pure expanded CUG repeats under the control
of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically,
expression of 250 CUG repeats caused abnormalities in the parallel
alignment of the spiral myofibrils in dissected fly hearts, as revealed
by phalloidin staining. Moreover, combined immunofluorescence
and in situ hybridization of Muscleblind and CUG repeats,
respectively, confirmed detectable ribonuclear foci and Muscleblind
sequestration, characteristic features of DM1, exclusively in flies
expressing the expanded CTG repeats. Similarly to what has been
reported in humans with DM1, heart-specific expression of toxic RNA
resulted in reducedsurvival, increasedarrhythmia, altereddiastolic and
systolic function, reduced heart tube diameters and reduced
contractility in the model flies. As a proof of concept that the fly heart
model can be used for in vivo testing of promising therapeutic
compounds, we fed flies with pentamidine, a compound previously
described to improve DM1 phenotypes. Pentamidine not only released
Muscleblind from the CUG RNA repeats and reduced ribonuclear
formation in the Drosophila heart, but also rescued heart arrhythmicity
and contractility, and improved fly survival in animals expressing 250
CUG repeats.
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INTRODUCTION
Myotonic dystrophy type 1 (DM1) is the most frequently inherited
neuromuscular disease in adults. Aside from skeletal muscle

symptoms, multi-organ involvement is also common and typically
affects cardiac, endocrine and central nervous system tissues
(Thornton, 2014). DM1 [Online Mendelian Inheritance of Man
(OMIM) 160900] has been identified as an autosomal-dominant
disorder associated with the presence of an abnormal CTG
trinucleotide repeat expansion in the 3′ untranslated region (UTR)
of the gene encoding myotonic dystrophy protein kinase (DMPK)
on chromosome 19. Whereas 5-34 CTG repeats are observed in
normal alleles, their number can reach up to between 50 and 2000 in
DM1 (Brook et al., 1992; Fu et al., 1992; Mahadevan et al., 1992).
The best-characterized effect of the expanded DMPK RNA
(CUGexp RNA) is disruption of the function of RNA-binding
proteins, including muscleblind-like 1 (MBNL1) and CUGBP
Elav-like family member 1 (CELF1), which regulate multiple
RNA-processing events, including alternative splicing, translation,
polyadenylation, miRNAs biogenesis, mRNA stability and mRNA
intracellular localization (Lee and Cooper, 2009; Batra et al., 2014;
Meola et al., 2013; Rau et al., 2011; Adereth et al., 2005; Wang
et al., 2012; Wang et al., 2015). CUGexp RNA impairs normal
postnatal alternative-splicing transitions regulated by MBNL1 and
CELF1. Whereas MBNL1 is sequestered to the CUG repeats, the
toxic effect of mutant RNA on CELF1 activity is very complex, and
involves increased CELF1 protein levels as a result of its
stabilization in the nucleus (Kuyumcu-Martinez et al., 2007; Kim
et al., 2014; Timchenko, 2013; Timchenko et al., 2001). As a result
of disrupting the function of these proteins, several mis-splicing
defects have been described and have been linked to specific
symptoms of the disease (Mankodi et al., 2002; Savkur et al., 2001;
Tang et al., 2012; Fugier et al., 2011). However, the physiological
consequences of alternative splicing, gene expression and
microRNA alterations in the heart are yet to be clarified (Phillips
et al., 1999; Rau et al., 2011; Kalsotra et al., 2014; Zu et al., 2011;
Lopez Castel et al., 2011; Moseley et al., 2006; Perbellini et al.,
2011; Fernandez-Costa et al., 2013; Wang et al., 2015). In general,
cardiac involvement, which often precedes the skeletal muscle one,
occurs in 80% of individuals with DM1 and represents the second
most common cause of death of such individuals, after respiratory
failure (Vinereanu et al., 2004). Several studies have reported an
overall positive association between CTG-repeat size and cardiac
involvement, and between the degree of neuromuscular and cardiac
dysfunction (Petri et al., 2012; Groh et al., 2002; Dello Russo et al.,
2006).

Three interrelated cardiac phenotypes are observed in individuals
with DM1. The first is conduction defects, which are particularly
common and can progress to complete heart blockage (Nguyen
et al., 1988). The second is the development of potentially fatal
ventricular and/or atrial arrhythmias (Nigro et al., 2012; Benhayon
et al., 2015). The third phenotype, although rarer, is mechanical
diastolic and/or systolic dysfunction that can progress to combined
systolic and diastolic heart failure (Phillips and Harper, 1997;Received 11 May 2015; Accepted 19 October 2015
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Mathieu et al., 1999; Lazarus et al., 2002; Groh et al., 2008).
The majority of individuals with DM1 show abnormal
electrocardiography (ECG) assessments, with prolonged time of
conduction of the sinoatrial impulse to the ventricles (PR interval)

(20-40% of affected individuals) and ventricular depolarization
(QRS complex) widening (5-25%) (McNally and Sparano, 2011).
Moreover, echocardiogram studies have also found that some
individuals with DM1 have reduced heart contractility, as revealed
by a lower left ventricular ejection fraction (LVEF less than 50%)
(Dhand et al., 2013; Chaudhry and Frishman, 2012).

Despite the relevance of heart involvement in DM1, the
molecular mechanisms causing the abnormalities in electric
conduction or contractility are not well understood. In previous
inducible DM1 mouse models, conduction disturbances appeared
a few days after inducing acute expression of either a short stretch
of five CTG triplets or long interrupted CTG repeats (Wang et al.,
2007; Mahadevan et al., 2006). These studies pointed to
alterations in cardiac conduction and excitability properties as an
early event in the appearance of DM1-associated
cardiomyopathies. Another mouse model was generated more
recently that carries the human DM1 locus constitutively
expressed under the regulation of its own promoter and its cis-
regulatory elements (DMSXL). These mice constitute a good
model of slow and steady-state expression of the triplet expansion,
as is observed in individuals with DM1. However, cardiac
abnormalities (reduced ventricular myocardium cell excitability)
were not observed in baseline conditions; rather, they were only
revealed after injection of the sodium-channel blocker flecainide
(Algalarrondo et al., 2015).

Adult Drosophila possess an open circulatory system consisting
of a dorsal vessel, which is the 1-mm-long pulsatile heart tube,
and an anterior aorta that extends through the thorax and into the
head (for a review ofDrosophila heart development and assessment
see Ocorr et al., 2014). The simple structure and physiology of
the Drosophila heart tube, together with its readily available
genetics, provide a suitable in vivo assay system for studying cardiac
dysfunctions. Here, we report the first Drosophila DM1 heart-
dysfunction model, generated by overexpression of long pure CUG
repeats {250 CUG repeats [CUG(250)×]} under the control of the
cardiomyocyte-specific driver GMH5-Gal4. We have detected
CUG ribonuclear foci and Muscleblind sequestration (the main
molecular features of the disease in humans) in theDrosophila heart
cell nuclei, and a shortened median survival and lifespan in DM1
flies. We also measured several Drosophila heart parameters and
found that these also resemble the heart dysfunction found in DM1
humans. Importantly, we confirmed that oral administration of
pentamidine to flies expressing long CUG repeats releases
Muscleblind from these repeats and prevents foci formation in
cardiac cell nuclei, also rescuing a subset of heart-dysfunction
phenotypes. Our data suggest that Drosophila represents an
appropriate DM1 heart-dysfunction model for physiopathological
studies and supports the utility of this model for the heart-specific
testing of potential therapeutic compounds.

RESULTS
Generation and characterization of a DM1 heart-dysfunction
model in Drosophila
To develop a heart-dysfunction model of DM1 in flies, we have
generated UAS-CTG transgenic lines carrying 20 [CUG(20)×] or
250 [CUG(250)×] pure CTG repeats and crossed them with the
cardiac-specific driver GMH5-Gal4 (Wessells et al., 2004), which
includes the UAS-GFP reporter, allowing the labeling of the tissues
in which Gal4 is expressed. The level of expression of the repeats
was assessed by qPCR analysis using primers against the common
SV40 terminator (Fig. S1), and the transgenes were confirmed to
express the expected number of repeats (Fig. S2).

TRANSLATIONAL IMPACT

Clinical issue

Cardiac involvement is a common complication of the skeletal muscle
disorder myotonic dystrophy type 1 (DM1), occurring in 80% of DM1
cases. Heart dysfunction is the second most common cause of fatality
associated with the disease, after respiratory distress. DM1 is caused by
the expansion of an unstable CTG repeat in the 3′ untranslated region
(UTR) of the DMPK gene, which encodes myotonic dystrophy protein
kinase. The expanded CUG repeats form a hairpin that sequesters the
RNA-binding protein muscleblind-like 1 (MBNL1) and other nuclear
factors into ribonuclear foci in a manner that is proportional to the CUG
expansion size. Sequestration has been proposed to cause depletion of
these proteins, leading to defects in splicing that underlie some of the
clinical symptoms of DM1. Despite the central involvement of heart
failure in DM1, very few studies have focused on the molecular cause of
cardiac dysfunction in this disease and fewer have tested the effect of
potential anti-DM1 compounds on this phenotype using suitable animal
models.

Results

In this study, Beatriz Llamusi and colleagues generated and
characterized a Drosophila model expressing pure expanded CUG
repeats under the control of the cardiomyocyte-specific driver GMH5-
Gal4. Supporting the suitability of this model to investigate cardiac
dysfunction in DM1, the authors noted key similarities between the
cardiac phenotype in DM1 model flies and those documented in
individuals with DM1. First, they observed a reduction of median
survival in model flies, which correlates to that reported in humans with
DM1. Second, they observed a significantly increased heart period and
arrhythmia index in the fly model, in line with heart conduction
abnormalities that are common in DM1. Thirdly, they observed systolic
and diastolic dysfunction reminiscent of that reported in affected
humans. DM1 individuals with cardiac abnormalities generally show
various extents of heart chamber dilation and hypertrophy, which result
in decreased ventricular ejection. This phenotype was also mimicked in
the fly model, which demonstrates reduced fractional shortening.
Providing proof-of-concept, the authors also reported the efficacy of a
known anti-DM1 compound, pentamidine, to partially rescue these heart
phenotypes. Adult DM1 model flies fed with pentamidine showed
reduced arrhythmicity and improved contractility, allowing a rescue of
cardiac output that translated into a median survival that did not differ
from control flies expressing 20× CUG repeats. However, the heart-rate
dysfunction observed in the DM1model flies was not completely rescued
by pentamidine.

Implications and future directions

A better understanding of the molecular mechanisms altered by
expansion of CTG repeats, and of the molecular interactions of the
repeat sequence in vivo, is crucial for deciphering the origin of the
symptoms of DM1 and to generate appropriate treatments. This work
describes, for the first time, the toxic effects of long CUGRNA on cardiac
function in a Drosophila model, paving the way for further studies to
elucidate the molecular alterations underlying cardiac involvement in
DM1. Moreover, the ability to detect changes in the phenotype in
response to treatment with a known anti-DM1 compound confirms the
specificity of the phenotype and its ability to respond to therapeutic
intervention. Because several aspects of DM1 pathogenesis are still
unclear, this model could be used to provide a more detailed description
of heart involvement in DM1 and allow the identification of potential
genetic modifiers of the heart alterations. Importantly, the model can also
be used to test the efficacy of different therapeutic approaches that so far
have only been tested in skeletal muscle.
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Hearts of flies expressing CUG repeats under the GMH5-Gal4
driver were dissected for immunohistological and morphological
assessment. Given the crucial involvement of Muscleblind protein
in DM1 pathogenesis, it was highly relevant to confirm its
expression in the Drosophila adult heart. Previous studies of
Muscleblind expression in Drosophila have focused on adult
skeletal muscle (Llamusi et al., 2013) or in the embryo (Artero et al.,
1998). In the current study, using an anti-Muscleblind antibody
(Houseley et al., 2005), we observed Muscleblind expression in the
adult heart cardiomyocytes. Muscleblind displayed a diffuse
expression not only in the nucleus but also in the cytoplasm of
cardiomyocytes, in both control (OrR) (not shown) and short-
repeat-expressing flies (Fig. 1A-F). In contrast, Muscleblind was
found concentrated in CUG ribonuclear foci in the nuclei in flies
expressing long CUG expansions. Muscleblind sequestration is one
of the main features of DM1. Ribonuclear foci were only present in
the nuclei of heart cells in long-CUG-expressing flies (Fig. 1G-I).
We also assessed the heart structure by staining actin, a structural

component of the contractile machinery of muscles. Drosophila
heart tubes have two types of muscle fibers, each with distinct

myofibrillar structures (Mery et al., 2008; Taghli-Lamallem et al.,
2008): (1) spirally or transversely oriented myofibrils that represent
the contractile ‘working’ myocardium; and (2) longitudinally
oriented myofibrils that are found along the ventral surface of the
tube (Molina and Cripps, 2001). In young flies, both types of
myofibrils exhibit a tight and well-aligned arrangement. Cardiac
myofibrils have been reported to stain uniformly along the entire
length of the thin filament with phalloidin (Ao and Lehrer, 1995),
so it can be used to visualize both types of myofibrils.

Phalloidin staining of actin did not reveal gross structural
abnormalities in the heart tube but found slight differences between
flies expressing short or long CUG repeats in the areas surrounding
the ostia. Cardiacmyofibrils were tightly arranged andwell aligned in
short-repeat-expressing flies at 1 week of age. However, age-matched
flies expressing long CUG repeats in heart showed abnormalities in
the parallel alignment of transverse myofibrils, which showed a
remarkable spiral disposition and less organized and compact
arrangement of the myocardial myofibrils. These alterations have
been also reported in aged fly hearts (Paternostro et al., 2001;
Wessells et al., 2004; Taghli-Lamallem et al., 2008) (Fig. 1J-K).

DM1 flies show a median survival reduction and
arrhythmicity
Population studies have reported higher mortality and morbidity
rates, and a positive correlation between age at onset of DM1 and age
at death in affected individuals (Breton and Mathieu, 2009).
Similarly, we found that, as a result of long-CUG-repeat expression
in heart, median survival and lifespan of flies were reduced at 29°C.
The analysis of the survival curves showed that expression of long
CUG repeats caused a significant reduction in the median survival of
flies. From 47 days in control (GMH5-Gal4 UAS-GFP) and 41 days
in short-repeat-expressing [GMH5-Gal4 UAS-CUG(20)×] flies,
median survival was reduced to only 25 days in flies expressing
long CUG repeats [GMH5-Gal UAS-CUG(250)×] (Fig. 2A). Of
note, lifespan and median survival of short-repeat-expressing flies
was not significantly reduced in comparison to controls (Fig. S3).

To study heart function, adult fly hearts dissected in artificial
hemolymph were recorded with a digital video camera. Because
previous studies have reported that heart function changes with age,
we selected 1-week-old flies for this study. Cardiac contractions
were analyzed using a semi-automatic optical heartbeat analysis
(SOHA) method to quantify the fly heart functional parameters.
M-mode traces of movie clips provided details of the heart wall edge
positions (y-axis) over time (x-axis), illustrating the rhythmicity and
the dynamics of the heart contractions (Ocorr et al., 2007).

For the characterization of the cardiac phenotype of long-CUG-
expressing flies, we compared their dynamic parameters with short-
repeat-expressing flies to reveal the effect of the repeat length, and
to two different controls: (1) F1 flies from crossing GMH5-Gal4
and w− flies (abbreviated w−) to take into account potential
contributions of the driver to the phenotype; and (2) F1 flies from
crossing GMH5-Gal4 to UAS-GFP flies (abbreviated GFP),
accounting for the dose of the UAS transgenes.

The exposed and largely denervated heart in control and short-
repeat-expressing flies showed rhythmic contractions; however, the
contractions were clearly arrhythmic in hearts from flies expressing
long repeats. We also observed morphological constrictions in
small regions along the heart tube where no relaxation phase was
observed (see Movie 1). Quantification of the heart period length
(HP, defined as the diastolic plus systolic interval) showed that long-
repeat-expressing flies exhibited a significantly increased HP
compared to control or short-repeat-expressing flies (Fig. 2B).

Fig. 1. Characterization of the DM1 heart-dysfunction phenotype in flies.
Representative fluorescent confocal images of adult heart cells from flies
expressing short [CUG(20)×] or long [CUG(250)×] repeats under the control of
GMH5-Gal4. (A-C) In cardiomyocytes expressing CUG(20)×, revealed by anti-
GFP antibody (red, B), Muscleblind signal (green, A) was dispersed in the
nuclei and cytoplasm. (D-I) Combined immunodetection of Muscleblind
(green, D and G) and FISH to detect ribonuclear foci (red, E and H) revealed
dispersed expression of Muscleblind and absence of foci in flies expressing
short CUG repeats (D-F). However, in flies expressing long CUG
repeats (G-I), Muscleblind colocalized with ribonuclear foci (arrows).
(J,K) Representative confocal stacks of phalloidin (red)-stained spiral fibers in
the region surrounding the ostia in adult hearts (posterior A2-anterior A3
segment) reveals details of the heart structure, in particular increased fiber
disorganization in GMH5-Gal4›CUG(250)× flies. Arrowhead points to
ostia-associated nuclei. Merged images in C,F,I,J and K include DAPI
(blue) counterstaining of the nuclei. All images are from 7-day-old flies.
Scale bars: 10 µm.
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The distribution of all of the measured HP for all flies of a specific
genotypewas represented in a histogram format, which revealed that
the HPs clustered relatively tightly in the short-repeat flies,
and that this distribution broadened in long-CUG-expressing
flies, emphasizing the increased variability in the HP (compare
Fig. 2D,E and 2F,G). The variability in the heart periodicity can be
quantified as an ‘arrhythmia index’ (AI) obtained by dividing the
standard deviation of the HP by its median (Fig. 2C). Flies
expressing long CUG repeats showed approximately a 50% increase
in AI compared to control and short-repeat-expressing flies.

Model flies display systolic and diastolic dysfunction, and
reduced contractility
Alterations of systolic and diastolic function, as well as decreased
ventricular ejection fraction, have previously been reported in
individuals with DM1 (Dello Russo et al., 2006). To test similar
alterations in model flies, we measured the heart rate (HR), the
diastolic and systolic intervals (DI and SI, respectively), and the
end-diastolic and end-systolic diameters (EDD and ESD,
respectively), and calculated the resulting percentage of fractional
shortening (% FS), and compared them to control and short-repeat-
expressing flies. We found that the increased mean HP, and the
correspondingly reduced HR (HP=1/HR) observed in flies
expressing long CUG repeats, were caused by systolic and

diastolic dysfunction, because both SI and DI (contraction and
relaxation period, respectively) were significantly prolonged in
comparison to control and short-repeat-expressing flies. To note, the
HP of CUG(20)× flies (Fig. 2B) was not significantly different to
controls because the slight increment in SI observed was
compensated by a decreased DI (Fig. 3B,C). Image analysis of
heart contractions also provided cardiac chamber parameters,
including EDD and ESD. In addition, the proportional decrease in
heart wall diameter during contraction provides an indication of the
cardiac output. Control flies displayed an average EDD of about
70 μm and an ESD of 50 μm, and the average FS was higher than
30%. In long-repeat-expressing flies, we observed a significant
decrease in EDD (to 50 μm), and also a reduced FS of only 20%
(Fig. 3D-F). These data revealed that heart tube volume is reduced
and there is a dysfunction of the contractile properties in hearts
expressing long CUG repeats. Interestingly, flies expressing short
CUG repeats showed both reduced ESD and EDD but normal FS,
suggesting that contractile dysfunction resulting in a reduced
cardiac output was exclusive to long-repeat-expressing hearts.

Pentamidine rescues survival, rhythmicity and contractility
in the heart-dysfunction model
To assesswhethermodel flies could be used as an in vivo tool to search
for potential therapeutic compounds against cardiac dysfunction in

Fig. 2. Flies expressing long CUG repeats in Drosophila cardiomyocytes have a shortened median survival and increased arrhythmicity. (A) Average
percentage of live flies, with the genotypes indicated, versus age (in days). Horizontal dotted line marks the median survival. Whereas control and short-
repeat-expressing flies had a similarmedian survival of 47 and 40.5 days, respectively [GFP, n=40 andCTG(20)×, n=50], long-CUG-expressing flies lived amedian
of only 25 days [CTG(250)×,n=45).Differences in survival curveswere highly significant (P<0.0001, log-rank test). (B,C)Heart periodmean (HP, B), andarrhythmia
index (AI, C) from flies expressing long and short CUG repeats and two types of control flies (F1 from crosses between theGMH5-Gal4 driver andw− orUAS-GFP).
Both parameters are significantly increased in flies expressing long repeats. The bars on the graph show mean values and their standard errors. **P<0.01,
***P<0.001, ns, not significant. (D-G) Representative M-modes (20 s) (D,F), with their respective histogram showing the percentage of beats and their duration
(E,G), taken from movies of semi-intact fly hearts expressing long (D,E) or short (F,G) repeats. Red and blue horizontal lines represent the diastolic interval
(DI) duration of CUG(250)×- and CUG(20)×-expressing flies, respectively. The systolic interval (SI) and the heart period (HP) length are also indicated in D. The HP
histograms, plotted as individual data points (n=21, E; n=29, G), illustrate the variability of the HP within a group of flies expressing long (E) and short (G) repeats.
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DM1, we tested the effect of a known anti-DM1 compound on the
Drosophila heart phenotype. Small molecules designed to inhibit the
toxic MBNL1-CUG repeat interaction had shown relevant anti-DM1

activity (Wong et al., 2014). Concretely, pentamidine significantly
reduces the formation of ribonuclear foci, and releases MBNL1 from
the foci in treated cells. Furthermore, pentamidine has been found to

Fig. 3. DM1 model flies displayed
systolic and diastolic dysfunction,
decreased diastolic diameter and
contractility defects. Flies expressing
long CUG repeats showed reduced heart
rate [HR, A; expressed in beats per
second (BPS)], increased diastolic (DI, B)
and systolic (SI, C) intervals, reduced
fractional shortening (FS, D), and
decreased end diastolic diameter (EDD,
E). The reduced contractility did not affect
the end systolic diameter (ESD, F), which
was not significantly different from
controls. Short-repeat-expressing flies
displayed an increased SI in comparison
to control flies and had a reduced ESD
and EDD, without any alteration of FS,
suggesting that they have no contractility
alteration. Graph bars show mean values
and their standard errors (n used was
between 14 and 29). *P<0.05, **P<0.01,
***P<0.001, ns, not significant.

Fig. 4. Pentamidine rescued lifespan, median survival and arrhythmicity in DM1 model flies. (A) The average percentage of live flies, with the genotypes
indicated, versus age (in days). Horizontal dotted line marks median survival. Model flies taking pentamidine [CUG(250)× P] had 40 days of median life, in
comparison to only 28 days for long (CUG)250×-expressing flies fed with DMSO [CUG(250)× D]. The survival curves of model flies fed with pentamidine and
control flies expressing short repeats fed with DMSO [CUG(20)× D] were not statistically different. (B) The heart period (HP) mean was not significantly altered by
pentamidine administration, although a clear trend towards reduction was observed, whereas the arrhythmia index (AI) was strongly reduced (C). Graph bars
show the mean values and their standard errors. *P<0.05, **P<0.01, ***P<0.001, ns, not significant. (D-G) Representative M-modes (20 s) (D,F) with their
corresponding histograms (E, n=25; G, n=30) of percentage of beats of a given duration taken from movies of semi-intact flies expressing long repeats fed either
with DMSO (D,E) or with pentamidine (F,G). Red and blue horizontal lines denote the diastolic interval (DI).
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partially rescue the splicing defects of two pre-mRNAs in mice
expressing expanded CUG repeats (Warf et al., 2009). To test the
effect of this compound in model flies, we added pentamidine diluted
in dimethyl sulfoxide (DMSO) to the nutritive media to a final
concentration of 1 µM. We tested the effect of DMSO in heart
performance prior to these experiments and confirmed that, at the
concentration used, it does not alter the cardiac parameters of
Drosophila (Fig. S4). In comparison to model flies fed with DMSO,
which have a median survival of 28 days, the median survival of
model flies fed with pentamidine increased up to 40 days, which
comes very close to the mean 47-day survival of control flies
(Fig. 4A).Moreover, therewas a significant reduction in arrhythmicity
(see Movies 1, 2 and Fig. 4C). Although in long-repeat-expressing
flies fed with pentamidine [CUG(250)× P] mean HP was not
significantly reduced (Fig. 4B), there was a clear reduction in the
deviation of the HP values, which reflected in a more constrained and
grouped HP histogram pattern in comparison to the long-CUG-
expressing flies taking DMSO [CUG(250)× D] (compare Fig. 4D,E
and F,G). The altered HR, SI and DI detected in the model flies,
reminiscent of the systolic and diastolic dysfunction reported in
affected humans, were not rescued by pentamidine, although we did
observe a conspicuous trend towards normal parameters (Fig. 5A-C).
An important recovery of heart contractile properties was observed in
pentamidine-treated flies. We observed a decreased ESD and
unchanged EDD, resulting into an increased FS (Fig. 5D-F).

Pentamidine reduces foci and releases Muscleblind in
cardiomyocytes of flies expressing long CUG repeats
In order to address the mechanism of action of pentamidine, we
performed fluorescence in situ hybridization (FISH) and
immunofluorescence to detect foci and Muscleblind, in hearts of
long-CUG-expressing flies that were fed 1 µM pentamidine. As
previously reported in DM1 cells in culture (Warf et al., 2009),
ribonuclear foci were absent in cardiomyocyte nuclei and
Muscleblind was distributed throughout the nucleus (Fig. 6A-C).
Moreover, because biochemical experiments and cell and mouse
model studies suggest that pentamidine and related compounds
might bind the CTG.CAG repeat DNA and inhibit transcription
(Coonrod et al., 2013), we measured expression levels of CUGexp

RNA in model flies fed with pentamidine or DMSO, detecting no
significant difference (Fig. 6D). These data confirmed that the

rescue of the cardiac-dysfunction phenotype achieved by
pentamidine was mediated by releasing Muscleblind sequestration
rather than reducing toxic RNA expression level.

DISCUSSION
Here we described, for the first time, the characterization of the
cardiac phenotypes of flies expressing either long or short CUG
repeats as a DM1 heart-dysfunction model. We measured changes

Fig. 5. Pentamidine improved
contractility in model flies. Cardiac
function parameters of short- and long-
CUG-expressing flies fed either with
DMSO [CUG(20)× D and CUG(250)×
D] or pentamidine [CUG(250)× P], in
comparison to controls. Pentamidine
did not modify heart rate (HR, A),
diastolic interval (DI, B), systolic interval
(SI, C) nor end diastolic diameter (EDD,
E) in model flies but strongly reduced
end systolic diameter (ESD, F) in these
flies, resulting in a relevant increase of
fractional shortening (FS, D). Graph
bars show the mean values and their
standard errors (n used was between
14 and 30). **P<0.01, ***P<0.001,
ns, not significant.

Fig. 6. Pentamidine mechanism of action. (A-C) Representative fluorescent
confocal images of adult heart cells from long-CUG-expressing flies fed with
pentamidine. Combined immunostaining of Muscleblind and CUG RNA FISH
showed Muscleblind release (A) and no detectable foci (B) in the nucleus of
cardiomyocytes of these flies. (C) Merge of A, B and DAPI; counterstaining of
nuclei shows dispersed Mbl localization in nuclei. (D) Graph bar represents
average fold changes of CUG(250)× expression in logarithmic scale,
calculated by the 2−ΔΔCt method, and their confidence intervals. Pentamidine
did not significantly alter expression level of CUG repeat RNA inmodel flies. ns,
not significant. Scale bar: 10 µm.
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in the heart dynamic parameters, including heart rate, rhythmicity,
systolic and diastolic diameters and intervals (ESD, EDD, SI and
DI), and FS. Moreover, we show that pentamidine, a compound
with previously reported anti-DM1 activity, has the ability to
modify the reported cardiac disease phenotypes.
The relevance of themodel is supported by the similarities between

the cardiac phenotype in DM1 model flies and those documented in
individuals with DM1. First, we observed a reduction in the median
survival in model flies, which correlates with reports for affected
humans (Petri et al., 2012). Cardiac mortality in individuals with
DM1 usually occurs because of progressive left ventricular
dysfunction, ischemic heart disease, pulmonary embolism, or as a
result of unexpected sudden death (SD) associated with the corrected
prolongedQT interval (period including electrical depolarization and
repolarization of the ventricles) (Park et al., 2013). Second, heart
conduction abnormalities are common in individuals with DM1
(Groh et al., 2008; McNally and Sparano, 2011). Similarly, we
observed a significantly increasedHP and arrhythmia index in our fly
model. Although several arrhythmias have been reported in
individuals with DM1, recent studies found that atrial fibrillation
(AF) and atrial flutter (AFL) are frequent in DM1 and are linked to
increased mortality (Brembilla-Perrot et al., 2014). Thirdly, the
altered SI and DI observed in DM1 flies are reminiscent of systolic
and diastolic dysfunction reported in humans with the disease
(Penisson-Besnier et al., 2008; Hermans et al., 2012). Recently,
echocardiography-Doppler found an increase of the mean left-atrial
diameter and an increase of the mitral deceleration time in DM1
individuals, suggesting diastolic abnormalities (Fayssoil et al., 2014).
Left ventricular systolic dysfunction (LVSD) has also been reported
in 7.2% of affected individuals (Petri et al., 2012). Moreover,
individuals with DM1 with cardiac abnormalities generally show
various extents of heart chamber dilation and hypertrophy, which
results in a decreased ventricular ejection fraction (Dhand et al., 2013;
Chaudhry and Frishman, 2012; McNally and Sparano, 2011;
Pelargonio et al., 2002; Hermans et al., 2012) and correlates with
the reduced FS we observed in model flies.
We have also found cardiac defects in flies expressing short CUG

repeats; mainly, slightly increased SI and reduced cardiac tube
diameters. Interestingly, model mice acutely overexpressing a
normal-length DMPK 3′ UTR mRNA reproduced cardinal
features of myotonic dystrophy, including myotonia, cardiac
conduction abnormalities, histopathology and RNA splicing
defects in the absence of detectable nuclear inclusions (Storbeck
et al., 2004; O’Cochlain et al., 2004; Mahadevan et al., 2006).
Authors hypothesized that the effects of overexpressing many
DMPK 3′ UTR transcripts with a small repeat number might be
pathogenically equivalent to expressing mutant transcripts with
hundreds of CUGs. In our flies, we measured a similar level of
expression of the repeats in short- and long-expressing flies but used
a potent promoter for overexpression (GMH5-Gal4). This driver
includes a UAS-GAL4 element, allowing strong and continuous
expression after induction. According to our data, controlled by this
driver, expression of 20 CTG repeats does cause the formation of
ribonuclear foci retainingMuscleblind but is enough to induce some
cardiac phenotypes. Because MBNL loss in mice has been recently
proven to be enough to cause cardiac pathology (Dixon et al., 2015),
the finding of cardiac pathology in the absence of Muscleblind
sequestration in our model flies becomes highly relevant because it
shows a cardiac dysfunction mechanism that might be Muscleblind-
independent in CUG-expressing flies.
The rescue of the cardiac parameters using pentamidine supports

the specificity of the heart-dysfunction phenotype and confirms the

therapeutic effect of pentamidine in an in vivo model. Interestingly,
pentamidine did not completely re-establish all cardiac parameters.
Diastolic and systolic function remained altered, suggesting that
either the effect of the pentamidine is limited, or the defect itself is
not susceptible to therapeutic recovery in adults. This could be the
case for alterations occurring early in development because the
Drosophila heart is one of a few structures that persist during pupal
morphogenesis, although it undergoes extensive remodeling (Rizki
and Rizki, 1978). Similarly, in humans, CUG RNA toxicity during
development could cause alterations in heart physiology or anatomy
that cannot be modified by treatment in adults. This situation is not
reproduced by inducible models expressing the CUG expansions
after birth, only in models with constitutive CUG-repeat expression.
Another heart-dysfunction feature that is not rescued by
pentamidine is the reduced EDD found in the model flies. Of
note, EDD was equally reduced in both flies expressing short and
long repeats, suggesting that it might not require Muscleblind
sequestration. Therefore, pentamidine might not be able to modify
this parameter. Importantly, the rescue achieved by pentamidine
was enough to increase FS, which correlates with hemolymph
volume ejected, and corrected the heart arrhythmia, both of which
are thought to be the most prevalent causes of sudden death in
individuals with DM1.

The long-repeat-expressing flies recapitulate many of the
pathological and molecular features of DM1, including reduced
survival, arrhythmias, systolic and diastolic dysfunction, and
Muscleblind retention into ribonuclear foci. The rescue obtained
by pentamidine treatment confirms that the DM1 model described
has a sensitized phenotype that is suitable to unravel the mechanism
of heart dysfunction in DM1 and to test potential therapeutic
approaches in future studies.

MATERIALS AND METHODS
Drosophila strains
Self-priming (CTG)20× and (CAG)20× synthetic oligonucleotides were
cloned into the linearized pUAST vector to generate pUAST-CTG(20)×.
PUAST-CTG(250)× was constructed by subcloning 500 uninterrupted CTG
repeats from the pcDNA-CTG(500)× vector, which was a kind gift from Dr
Partha Sarkar (Department of Neurology, University of Texas Medical
Branch, TX). After cloning into pUAST and amplification into the STBL3
(Invitrogen) Escherichia coli strain at 20°C, the 500 pure CTG repeats
contracted to 250 CTG units. Transgenic flies carrying 250 or 20 pure
repeats were generated by standard P-mediated transgenesis (BestGene Inc.,
Chino Hills, CA, USA). Transgenic lines carrying both long and short
repeats were selected on the basis of moderate transgene expression and
reproducibility of the phenotypes studied. In the fly lines used, the
transgenes were located by inverse PCR to chromosome 2. The
cardiomyocyte-specific driver GMH5-Gal4 (kindly provided by the
laboratory of Dr Rolf Bodmer in the Burnham Institute, CA, USA) is a
900 bp heart enhancer fragment 73 from the tinman gene that was cloned
into the P{GaWB} vector upstream of the Gal4 sequences. This driver was
enhanced with multiple copies of a UAS-Gal4 element allowing stronger
myocardial expression and a UAS-GFP element allowing detection of the
expression tissue (Wessells et al., 2004). All fly lines were maintained at 25°
C with standard Drosophila food and standard day-night cycle.

Quantification of CUG-repeat expression level
Total RNA was extracted from ten flies per genotype using Trizol reagent
(Sigma). DNase I treatment and reverse transcription were performed as
previously reported (Llamusi et al., 2013). To quantify the expression of
CUG RNA, the common SV40 terminator in the pUAST vector was used as
target of the primers (F: 5′-GGAAAGTCCTTGGGGTCTTC-3′, R: 5′-G-
GAACTGATGAATGGGAGCA-3′). Expression levels were normalized to
the reference gene rp49 (F: 5′-ATGACCATCCGCCCAGCATAC-3′, R: 5′-
ATGTGGCGGGTGCGCTTGTTC-3′) using the SYBR® Green mixture
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(Roche) under 2−ΔΔCt method. For each genotype, three biological samples
were used and three technical replicates were performed.

Detection of CUG-repeat length
To confirm the length of the repeats in the UAS-CTG(20)× and UAS-CTG
(250)× transgenes, 40 ng of genomic DNA was used as a template for the
PCR amplification with KAPAHiFi (BIOSYSTEMS) and the primers: F 5′-
GCAACTACTGAAATCTGCCAAGA-3′ and reverse- 5′-GTTGAGAGT-
CAGCAGTAGCC-3′, which flank the repeats. The region amplified by the
primers includes the short repeats (60 bp) and 375 bp of the CTG(20×)
plasmid, and the long repeats (750 bp) and 428 bp of the CTG(250)×
plasmid. PCR amplification was performed under the following conditions:
95°C for 2 min, followed by 30 cycles of 98°C for 20 s, 65°C for 30 s, 72°C
for 1 min and final extension at 72°C for 5 min. The PCR products were
analyzed by electrophoresis at 110 V in 1.5% agarose gels.

Pentamidine treatment
Pentamidine was added to the standard food to a final concentration of 1 µM
in 0.1% DMSO (Applichem). The control group of flies was fed with 0.1%
DMSO. Flies were transferred every 3 days to new fresh food media, with or
without pentamidine for the duration of their whole lifespan in life survival
experiments or every 7 days in the case of the group used for cardiac
analysis.

Survival analyses
For survival analyses, a minimum of 40 female flies from the corresponding
genotypes were collected and kept at 29°C. Flies were transferred to new
fresh nutritive media every second day and scored for deaths daily.
Statistical analysis was performed with a log-rank test using the GraphPad
Prism5 software.

Cardiac physiological analysis
For the physiological analysis, female flies were collected just after eclosion
and were maintained for 7 days at 29°C. For the heart beat recordings, semi-
intact heart preparations were made as previously described (Ocorr et al.,
2007; Magny et al., 2013). An inverted Leica DM Irbe microscope,
connected to a DFC450C Leica digital camera, was used to take 20 s
recordings at 29 frames/s. Different cardiac parameters were measured using
Fly_heart_analysis (SOHA) software based on Matlab R2009b
(MathWorks, Natick, MA, USA) (Ocorr et al., 2007). For the statistical
analysis, Student’s t-test was used with Welch’s correction when the
variances were different.

Fluorescent immunofluorescence analysis
Fly hearts were dissected from 7-day-old females, fixed for 20 min in 4%
paraformaldehyde, andwashed in PBT (PBS containing 0.3%TritonX-100).
Muscleblind staining and FISH to detect ribonuclear foci were performed as
previously described (Llamusi et al., 2013). For double Muscleblind and
GFP staining, dissected hearts were washed in PBT and incubated in
blocking buffer (PBS containing 0.3% Triton X-100, 5% donkey serum and
0.5% bovine serum albumin) for 30 min prior to overnight incubation at 4°C
with primary antibodies sheep-anti-Muscleblind (Houseley et al., 2005) and
rabbit anti-GFP (#G10362, Invitrogen) diluted 1/500 in blocking buffer.
After several PBT washes, the tissue was incubated for 45 min with biotin-
conjugated secondary antibodies (#31840, Thermoscientific) at 1:200
dilution and then incubated with ABC solution (ABC kit, VECTASTAIN)
for 30 min at room temperature, followed by washes and 45 min incubation
with anti-rabbit FITC (#F9887-5ML, Sigma) secondary antibody and
streptavidin–Texas-red (1:1000, #SA5006, VECTOR). For phalloidin
staining, phalloidin (#P1951, Sigma) was diluted 1:1000 in PBT and
tissues were incubated for 20 min. Samples were mounted in Vectashield
(Vector) as described before (Alayari et al., 2009). All confocal images were
taken in an Olympus FV1000 microscope.
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2013/A/044).

Supplementary information
Supplementary information available online at
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021428/-/DC1

References
Adereth, Y., Dammai, V., Kose, N., Li, R. and Hsu, T. (2005). RNA-dependent

integrin alpha3 protein localization regulated by the Muscleblind-like protein
MLP1. Nat. Cell Biol. 7, 1240-1247.

Alayari, N. N., Vogler, G., Taghli-Lamallem, O., Ocorr, K., Bodmer, R. and
Cammarato, A. (2009). Fluorescent labeling of Drosophila heart structures.
J. Vis. Exp. 13, pii: 1423.

Algalarrondo, V., Wahbi, K., Sebag, F., Gourdon, G., Beldjord, C., Azibi, K.,
Balse, E., Coulombe, A., Fischmeister, R., Eymard, B. et al. (2015). Abnormal
sodium current properties contribute to cardiac electrical and contractile
dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscul.
Disord. 25, 308-320.

Ao, X. and Lehrer, S. S. (1995). Phalloidin unzips nebulin from thin filaments in
skeletal myofibrils. J. Cell Sci. 108, 3397-3403.

Artero, R., Prokop, A., Paricio, N., Begemann, G., Pueyo, I., Mlodzik, M., Perez-
Alonso, M. and Baylies, M. K. (1998). The muscleblind gene participates in the
organization of Z-bands and epidermal attachments of Drosophila muscles and is
regulated by Dmef2. Dev. Biol. 195, 131-143.

Batra, R., Charizanis, K., Manchanda, M., Mohan, A., Li, M., Finn, D. J.,
Goodwin, M., Zhang, C., Sobczak, K., Thornton, C. A. et al. (2014). Loss
of MBNL leads to disruption of developmentally regulated alternative
polyadenylation in RNA-mediated disease. Mol. Cell 56, 311-322.

Benhayon, D., Lugo, R., Patel, R., Carballeira, L., Elman, L. and Cooper, J. M.
(2015). Long-term arrhythmia follow-up of patients with myotonic dystrophy.
J. Cardiovasc. Electrophysiol. 26, 305-310.

Brembilla-Perrot, B., Schwartz, J., Huttin, O., Frikha, Z., Sellal, J. M., Sadoul, N.,
Blangy, H., Olivier, A., Louis, S. and Kaminsky, P. (2014). Atrial flutter or
fibrillation is the most frequent and life-threatening arrhythmia in myotonic
dystrophy. Pac. Clin. Electrophysiol. 37, 329-335.

Breton, R. and Mathieu, J. (2009). Usefulness of clinical and electrocardiographic
data for predicting adverse cardiac events in patients with myotonic dystrophy.
Can. J. Cardiol. 25, e23-e27.

Brook, J. D., McCurrach, M. E., Harley, H. G., Buckler, A. J., Church, D.,
Aburatani, H., Hunter, K., Stanton, V. P., Thirion, J.-P., Hudson, T. et al.
(1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG)
repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell
68, 799-808.

Chaudhry, S.-P. and Frishman, W. H. (2012). Myotonic dystrophies and the heart.
Cardiol. Rev. 20, 1-3.

Coonrod, L. A., Nakamori, M., Wang, W., Carrell, S., Hilton, C. L., Bodner, M. J.,
Siboni, R. B., Docter, A. G., Haley, M. M., Thornton, C. A. et al. (2013).
Reducing levels of toxic RNA with small molecules. ACS Chem. Biol. 8,
2528-2537.

Dello Russo, A., Pelargonio, G., Parisi, Q., Santamaria, M., Messano, L., Sanna,
T., Casella, M., De Martino, G., De Ponti, R., Pace, M. et al. (2006). Widespread
electroanatomic alterations of right cardiac chambers in patients with myotonic
dystrophy type 1. J. Cardiovasc. Electrophysiol. 17, 34-40.

Dhand, U. K., Raja, F. and Aggarwal, K. (2013). Structural myocardial involvement
in adult patients with type 1 myotonic dystrophy. Neurol. Int. 5, e5.

Dixon, D. M., Choi, J., El-Ghazali, A., Park, S. Y., Roos, K. P., Jordan, M. C.,
Fishbein, M. C., Comai, L. and Reddy, S. (2015). Loss of muscleblind-like 1
results in cardiac pathology and persistence of embryonic splice isoforms. Sci.
Rep. 5, 9042.

Fayssoil, A., Nardi, O., Annane, D. and Orlikowski, D. (2014). Diastolic function in
Steinert’s disease. Neurol. Int. 6, 5140.

1576

RESEARCH ARTICLE Disease Models & Mechanisms (2015) 8, 1569-1578 doi:10.1242/dmm.021428

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021428/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021428/-/DC1
http://dx.doi.org/10.1038/ncb1335
http://dx.doi.org/10.1038/ncb1335
http://dx.doi.org/10.1038/ncb1335
http://dx.doi.org/10.3791/1423
http://dx.doi.org/10.3791/1423
http://dx.doi.org/10.3791/1423
http://dx.doi.org/10.1016/j.nmd.2014.11.018
http://dx.doi.org/10.1016/j.nmd.2014.11.018
http://dx.doi.org/10.1016/j.nmd.2014.11.018
http://dx.doi.org/10.1016/j.nmd.2014.11.018
http://dx.doi.org/10.1016/j.nmd.2014.11.018
http://dx.doi.org/10.1006/dbio.1997.8833
http://dx.doi.org/10.1006/dbio.1997.8833
http://dx.doi.org/10.1006/dbio.1997.8833
http://dx.doi.org/10.1006/dbio.1997.8833
http://dx.doi.org/10.1016/j.molcel.2014.08.027
http://dx.doi.org/10.1016/j.molcel.2014.08.027
http://dx.doi.org/10.1016/j.molcel.2014.08.027
http://dx.doi.org/10.1016/j.molcel.2014.08.027
http://dx.doi.org/10.1111/jce.12604
http://dx.doi.org/10.1111/jce.12604
http://dx.doi.org/10.1111/jce.12604
http://dx.doi.org/10.1111/pace.12260
http://dx.doi.org/10.1111/pace.12260
http://dx.doi.org/10.1111/pace.12260
http://dx.doi.org/10.1111/pace.12260
http://dx.doi.org/10.1016/S0828-282X(09)70479-9
http://dx.doi.org/10.1016/S0828-282X(09)70479-9
http://dx.doi.org/10.1016/S0828-282X(09)70479-9
http://dx.doi.org/10.1016/0092-8674(92)90154-5
http://dx.doi.org/10.1016/0092-8674(92)90154-5
http://dx.doi.org/10.1016/0092-8674(92)90154-5
http://dx.doi.org/10.1016/0092-8674(92)90154-5
http://dx.doi.org/10.1016/0092-8674(92)90154-5
http://dx.doi.org/10.1097/CRD.0b013e31821950f9
http://dx.doi.org/10.1097/CRD.0b013e31821950f9
http://dx.doi.org/10.1021/cb400431f
http://dx.doi.org/10.1021/cb400431f
http://dx.doi.org/10.1021/cb400431f
http://dx.doi.org/10.1021/cb400431f
http://dx.doi.org/10.1111/j.1540-8167.2005.00277.x
http://dx.doi.org/10.1111/j.1540-8167.2005.00277.x
http://dx.doi.org/10.1111/j.1540-8167.2005.00277.x
http://dx.doi.org/10.1111/j.1540-8167.2005.00277.x
http://dx.doi.org/10.4081/ni.2013.e5
http://dx.doi.org/10.4081/ni.2013.e5
http://dx.doi.org/10.1038/srep09042
http://dx.doi.org/10.1038/srep09042
http://dx.doi.org/10.1038/srep09042
http://dx.doi.org/10.1038/srep09042
http://dx.doi.org/10.4081/ni.2014.5140
http://dx.doi.org/10.4081/ni.2014.5140


Fernandez-Costa, J. M., Garcia-Lopez, A., Zuniga, S., Fernandez-Pedrosa, V.,
Felipo-Benavent, A., Mata, M., Jaka, O., Aiastui, A., Hernandez-Torres, F.,
Aguado, B. et al. (2013). Expanded CTG repeats trigger miRNA alterations in
Drosophila that are conserved in myotonic dystrophy type 1 patients. Hum. Mol.
Genet. 22, 704-716.

Fu, Y. H., Pizzuti, A., Fenwick, R. G., Jr, King, J., Rajnarayan, S., Dunne, P. W.,
Dubel, J., Nasser, G. A., Ashizawa, T., de Jong, P. et al. (1992). An unstable
triplet repeat in a gene related to myotonic muscular dystrophy. Science 255,
1256-1258.

Fugier, C., Klein, A. F., Hammer, C., Vassilopoulos, S., Ivarsson, Y., Toussaint,
A., Tosch, V., Vignaud, A., Ferry, A., Messaddeq, N. et al. (2011). Misregulated
alternative splicing of BIN1 is associated with T tubule alterations and muscle
weakness in myotonic dystrophy. Nat. Med. 17, 720-725.

Groh, W. J., Lowe, M. R. and Zipes, D. P. (2002). Severity of cardiac conduction
involvement and arrhythmias in myotonic dystrophy type 1 correlates with age and
CTG repeat length. J. Cardiovasc. Electrophysiol. 13, 444-448.

Groh, W. J., Groh, M. R., Saha, C., Kincaid, J. C., Simmons, Z., Ciafaloni, E.,
Pourmand, R., Otten, R. F., Bhakta, D., Nair, G. V. et al. (2008).
Electrocardiographic abnormalities and sudden death in myotonic dystrophy
type 1. N. Engl. J. Med. 358, 2688-2697.

Hermans, M. C. E., Faber, C. G., Bekkers, S. C. A. M., de Die-Smulders, C. E. M.,
Gerrits, M. M., Merkies, I. S. J., Snoep, G., Pinto, Y. M. and Schalla, S. (2012).
Structural and functional cardiac changes in myotonic dystrophy type 1: a
cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 14, 48.

Houseley, J. M.,Wang, Z., Brock, G. J. R., Soloway, J., Artero, R., Perez-Alonso,
M., O’Dell, K. M. C. and Monckton, D. G. (2005). Myotonic dystrophy associated
expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to
Drosophila. Hum. Mol. Genet. 14, 873-883.

Kalsotra, A., Singh, R. K., Gurha, P., Ward, A. J., Creighton, C. J. and Cooper,
T. A. (2014). The Mef2 transcription network is disrupted in myotonic dystrophy
heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 6,
336-345.

Kim, Y. K., Mandal, M., Yadava, R. S., Paillard, L. and Mahadevan, M. S. (2014).
Evaluating the effects of CELF1 deficiency in a mouse model of RNA toxicity.
Hum. Mol. Genet. 23, 293-302.

Kuyumcu-Martinez, N. M., Wang, G.-S. and Cooper, T. A. (2007). Increased
steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated
hyperphosphorylation. Mol. Cell 28, 68-78.

Lazarus, A., Varin, J., Babuty, D., Anselme, F., Coste, J. and Duboc, D. (2002).
Long-term follow-up of arrhythmias in patients with myotonic dystrophy treated
by pacing: a multicenter diagnostic pacemaker study. J. Am. Coll. Cardiol. 40,
1645-1652.

Lee, J. E. and Cooper, T. A. (2009). Pathogenic mechanisms of myotonic
dystrophy. Biochem. Soc. Trans. 37, 1281-1286.

Llamusi, B., Bargiela, A., Fernandez-Costa, J. M., Garcia-Lopez, A., Klima, R.,
Feiguin, F. and Artero, R. (2013). Muscleblind, BSF and TBPH are mislocalized
in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis. Model.
Mech. 6, 184-196.

Lopez Castel, A., Nakamori, M., Tome, S., Chitayat, D., Gourdon, G., Thornton,
C. A. and Pearson, C. E. (2011). Expanded CTG repeat demarcates a boundary
for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol.
Genet. 20, 1-15.

Magny, E. G., Pueyo, J. I., Pearl, F. M. G., Cespedes, M. A., Niven, J. E.,
Bishop, S. A. and Couso, J. P. (2013). Conserved regulation of cardiac
calcium uptake by peptides encoded in small open reading frames. Science
341, 1116-1120.

Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G.,
Neville, C., Narang, M., Barcelo, J., O’Hoy, K. et al. (1992). Myotonic dystrophy
mutation: an unstable CTG repeat in the 3′ untranslated region of the gene.
Science 255, 1253-1255.

Mahadevan, M. S., Yadava, R. S., Yu, Q., Balijepalli, S., Frenzel-McCardell,
C. D., Bourne, T. D. and Phillips, L. H. (2006). Reversible model of RNA toxicity
and cardiac conduction defects in myotonic dystrophy. Nat. Genet. 38,
1066-1070.

Mankodi, A., Takahashi, M. P., Jiang, H., Beck, C. L., Bowers, W. J., Moxley,
R. T., Cannon, S. C. and Thornton, C. A. (2002). Expanded CUG repeats trigger
aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of
skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35-44.

Mathieu, J., Allard, P., Potvin, L., Prevost, C. and Begin, P. (1999). A 10-year
study of mortality in a cohort of patients with myotonic dystrophy. Neurology 52,
1658-1662.

McNally, E. M. and Sparano, D. (2011). Mechanisms andmanagement of the heart
in myotonic dystrophy. Heart 97, 1094-1100.

Meola, G., Jones, K., Wei, C. and Timchenko, L. T. (2013). Dysfunction of protein
homeostasis in myotonic dystrophies. Histol. Histopathol. 28, 1089-1098.

Mery, A., Taghli-Lamallem, O., Clark, K. A., Beckerle, M. C., Wu, X., Ocorr, K.
and Bodmer, R. (2008). The Drosophila muscle LIM protein, Mlp84B, is essential
for cardiac function. J. Exp. Biol. 211, 15-23.

Molina, M. R. and Cripps, R. M. (2001). Ostia, the inflow tracts of the Drosophila
heart, develop from a genetically distinct subset of cardial cells. Mech. Dev. 109,
51-59.

Moseley, M. L., Zu, T., Ikeda, Y., Gao, W., Mosemiller, A. K., Daughters, R. S.,
Chen, G., Weatherspoon, M. R., Clark, H. B., Ebner, T. J. et al. (2006).
Bidirectional expression of CUG and CAG expansion transcripts and intranuclear
polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38,
758-769.

Nigro, G., Papa, A. A. and Politano, L. (2012). The heart and cardiac pacing in
Steinert disease. Acta Myol. 31, 110-116.

Nguyen, H. H., Wolfe, J. T., Holmes, D. R. Jr and Edwards, W. D. (1988).
Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12
cases. J. Am. Coll. Cardiol. 11, 662-671.

O’Cochlain, D. F., Perez-Terzic, C., Reyes, S., Kane, G. C., Behfar, A., Hodgson,
D. M., Strommen, J. A., Liu, X.-K., van den Broek, W., Wansink, D. G. et al.
(2004). Transgenic overexpression of human DMPK accumulates into
hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of
myotonic dystrophy. Hum. Mol. Genet. 13, 2505-2518.

Ocorr, K., Perrin, L., Lim, H.-Y., Qian, L., Wu, X. and Bodmer, R. (2007). Genetic
control of heart function and aging in Drosophila. Trends Cardiovasc. Med. 17,
177-182.

Ocorr, K., Vogler, G. and Bodmer, R. (2014). Methods to assess Drosophila heart
development, function and aging. Methods 68, 265-272.

Park, K. M., Shin, K. J., Kim, S. E., Park, J., Ha, S. Y. and Kim, B. J. (2013).
Prolonged correctedQT interval in patients withmyotonic dystrophy type 1. J. Clin.
Neurol. 9, 186-191.

Paternostro, G., Vignola, C., Bartsch, D.-U., Omens, J. H., McCulloch, A. D. and
Reed, J. C. (2001). Age-associated cardiac dysfunction in Drosophila
melanogaster. Circ. Res. 88, 1053-1058.

Pelargonio, G., Dello Russo, A., Sanna, T., De Martino, G. and Bellocci, F.
(2002). Myotonic dystrophy and the heart. Heart 88, 665-670.

Penisson-Besnier, I., Devillers, M., Porcher, R., Orlikowski, D., Doppler, V.,
Desnuelle, C., Ferrer, X., Bes, M.-C. A., Bouhour, F., Tranchant, C. et al.
(2008). Dehydroepiandrosterone for myotonic dystrophy type 1. Neurology 71,
407-412.

Perbellini, R., Greco, S., Sarra-Ferraris, G., Cardani, R., Capogrossi, M. C.,
Meola, G. and Martelli, F. (2011). Dysregulation and cellular mislocalization of
specific miRNAs in myotonic dystrophy type 1. Neuromuscul. Disord. 21,
81-88.

Petri, H., Vissing, J., Witting, N., Bundgaard, H. and Køber, L. (2012). Cardiac
manifestations of myotonic dystrophy type 1. Int. J. Cardiol. 160, 82-88.

Phillips, M. F. and Harper, P. S. (1997). Cardiac disease in myotonic dystrophy.
Cardiovasc. Res. 33, 13-22.

Phillips, M. F., Steer, H. M., Soldan, J. R., Wiles, C. M. and Harper, P. S. (1999).
Daytime somnolence in myotonic dystrophy. J. Neurol. 246, 275-282.

Rau, F., Freyermuth, F., Fugier, C., Villemin, J.-P., Fischer, M.-C., Jost, B.,
Dembele, D., Gourdon, G., Nicole, A., Duboc, D. et al. (2011). Misregulation of
miR-1 processing is associated with heart defects in myotonic dystrophy. Nat.
Struct. Mol. Biol. 18, 840-845.

Rizki, T. M. and Rizki, R. M. (1978). Larval adipose tissue of homoeotic bithorax
mutants of Drosophila. Dev. Biol. 65, 476-482.

Savkur, R. S., Philips, A. V. and Cooper, T. A. (2001). Aberrant regulation of insulin
receptor alternative splicing is associated with insulin resistance in myotonic
dystrophy. Nat. Genet. 29, 40-47.

Storbeck, C. J., Drmanic, S., Daniel, K., Waring, J. D., Jirik, F. R., Parry, D. J.,
Ahmed, N., Sabourin, L. A., Ikeda, J. E. andKorneluk, R. G. (2004). Inhibition of
myogenesis in transgenic mice expressing the human DMPK 3’-UTR. Hum. Mol.
Genet. 13, 589-600.

Taghli-Lamallem, O., Akasaka, T., Hogg, G., Nudel, U., Yaffe, D., Chamberlain,
J. S., Occor, K. and Bodmer, R. (2008). Dystrophin deficiency in Drosophila
reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 7,
237-249.

Tang, Z. Z., Yarotskyy, V., Wei, L., Sobczak, K., Nakamori, M., Eichinger, K.,
Moxley, R. T., Dirksen, R. T. and Thornton, C. A. (2012). Muscle weakness in
myotonic dystrophy associated with misregulated splicing and altered gating of Ca
(V)1.1 calcium channel. Hum. Mol. Genet. 21, 1312-1324.

Thornton, C. A. (2014). Myotonic dystrophy. Neurol. Clin. 32, 705-719, viii.
Timchenko, L. (2013). Molecular mechanisms of muscle atrophy in myotonic

dystrophies. Int. J. Biochem. Cell Biol. 45, 2280-2287.
Timchenko, N. A., Iakova, P., Cai, Z.-J., Smith, J. R. and Timchenko, L. T. (2001).

Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol.
Cell. Biol. 21, 6927-6938.

Vinereanu, D., Bajaj, B. P. S., Fenton-May, J., Rogers, M. T., Mädler, C. F. and
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Fig S1: Relative expression level of CUG repeats in DM1 model: qPCR analysis showing 

the relative expression levels of UAS CTG(250)x and UAS CTG(20)x transgenes. In the fly 

lines used in this study expression levels of CUG(20)x and CUG(250)x RNA were similar (p 

value ns using t-student test). Measurements were normalized to the housekeeping gene 

Rp49.  
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Fig S2: Quantification of the number of CTG repeat in the transgenes used in this 

study. Agarose gel showing the size  of the amplicons  obtained after PCR with specific 

primers to detect the length of the CTG repeats inserted in the genomic DNA of flies 

expressing short (lane 1) or long CTG repeats (lane 3). Lane 2 is a molecular weight marker 

(MWM) with sizes in base pairs. This PCR confirms that the short and long repeats have the 

expected size and also that they are stable as their length has not changed 1 year after the 

establishment of the fly stocks. 
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Fig S3: Survival curve of flies expressing short CUG repeats is similar to control flies 

and it is not altered by DMSO. Lifespan of flies expressing short CUG repeats under the 

control of GMH5-Gal4, fed with DMSO (CUG(20)x D) or not (CUG(20)x) is not significantly 

different from control flies expressing GFP. Mean life was slightly decreased, from 47 days in 

control flies to 40,5 days in CUG(20)x flies or 37 days in CUG(20)x D flies, but this difference 

was not statistically significant. Statistical analysis was performed with a log-rank test using 

the GraphPad Prism4 software. 

 

 

 

 

 

 

 

 

 

Fig S4: Effect of DMSO on heart performance . Comparison of heart period (HP), rate 

(HR) and fractional shortening (FS) obtained from both fly lines used in our study (long and 

short CUG repeats) fed with or without DMSO showed no significant difference between 

both condition in any case (two-way Anova test).  
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Movie 1: Movie showing a representative dissected heart of a CTG(250)x D fly beating 

in artificial hemolymph. All the flies were 7 days old when recorded. Anterior is right and 

posterior is left. The arrhythmicity, the reduced diameter of the heart tube and the 

morphological constrictions in different regions along the heart tube, are characteristic of the 

DM1 model flies. 
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Movie 2: Movie showing a representative dissected heart of a CTG(250)x P fly beating 

in artificial hemolymph. Model flies fed with pentamidine have a remarkable slower heart 

rate and more rhythmic and efficient contractions. 
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