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Branchingmorphogenesis in the developing kidney is governed by
rules that pattern the ureteric tree
James G. Lefevre1,*, Kieran M. Short2,3,*, Timothy O. Lamberton1,*, Odyssé Michos4, Daniel Graf5,
Ian M. Smyth2,3,6,‡ and Nicholas A. Hamilton1,‡

ABSTRACT
Metanephric kidney development is orchestrated by the iterative
branching morphogenesis of the ureteric bud. We describe an
underlying patterning associated with the ramification of this
structure and show that this pattern is conserved between
developing kidneys, in different parts of the organ and across
developmental time. This regularity is associated with a highly
reproducible branching asymmetry that is consistent with locally
operative growth mechanisms. We then develop a class of tip state
models to represent elaboration of the ureteric tree and describe rules
for ‘half-delay’ branching morphogenesis that describe almost
perfectly the patterning of this structure. Spatial analysis suggests
that the observed asymmetry may arise from mutual suppression of
bifurcation, but not extension, between the growing ureteric tips, and
demonstrates that disruption of patterning occurs in mousemutants in
which the distribution of tips on the surface of the kidney is altered.
These findings demonstrate that kidney development occurs by way
of a highly conserved reiterative pattern of asymmetric bifurcation that
is governed by intrinsic and locally operative mechanisms.
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INTRODUCTION
The increase in organ size associated with the evolution of complex
body plans presents challenges for the organism in mediating the
efficient exchange of nutrients and the removal of waste. To
effectively ‘plumb’ tissues, animals have evolved a developmental
mechanism known as branching morphogenesis that serves to break
up large tissues to maintain their effective surface area to volume
ratio. The branching process typically initiates through the
formation of bud-like organ anlage, which invades (and ramifies
within) an associated mesenchymal field to form complex networks
of epithelial tubes that ultimately allow for cellular exchange.

Branching morphogenesis is pervasive in higher eukaryotes and is
crucial for the development of organs such as the kidney, lung and
mammary gland. In the metanephric kidney, organogenesis begins
with the formation of the ureteric bud (UB), which appears as an
outgrowth of the nephric duct at E10.5 in mice and during the fifth
week of gestation in humans (Saxen, 1987). The UB then grows to
contact and invade a surrounding field of cells known as the
metanephric mesenchyme, which in later development condenses
around the tips of the ureteric tree to form discrete cellular fields
known as the cap mesenchyme (CM). The UB tips require the
presence of CM cells to undergo ongoing branching (Self et al.,
2006). In turn, the CM responds to tip signals to control the self-
renewal and commitment of precursor populations to form the
nephrons (Kreidberg et al., 1993), which will ultimately integrate
with the ureteric tree to form the urine collecting system of the adult
organ. Reciprocal epithelial-mesenchymal exchange of this nature
is a feature of almost all developmental branching morphogenesis
and is central to the functional differentiation of cells in both
compartments.

A central question in the study of branching morphogenesis in the
kidney is the degree to which stereotypy characterizes elaboration of
the epithelium. Do epithelial branching events occur at
predetermined places and at defined developmental stages to form
a morphologically distinct structure? A landmark study of the
developing mouse lung describes a highly predictable program that
features three morphologically distinct branch types that are
reproducibly employed in a program which establishes a precise
pulmonary airway architecture (Metzger et al., 2008). Although this
suggests a hard-wired genetic control of the branching process,
other reports have argued for a more adaptive mechanism emerging
from pulmonary epithelial-mesenchyme interactions (Blanc et al.,
2012). Mathematical models have been developed based on such
known interactions to explain the process of tip bifurcation in the
lung (Menshykau et al., 2012) and kidney (Menshykau and Iber,
2013), and the induction of the ureteric bud (Lawson and Flegg,
2016). These models, which are based on a Schnakenburg-like
Turing patterning arising from competition for mesenchymal signal,
have so far not been able to explain the broad patterning of the
epithelial trees. In the kidney, analysis of epithelial ureteric
branching in culture suggests self-avoidance in the growing tips –
observations that support an adaptive branching mechanism
operating in the organ (Davies et al., 2014). This is consistent
with our previous studies that have shown that although branching
of the ureteric tree is not spatially stereotypical, its elaboration
(based on hierarchy) is indeed highly reproducible (Short et al.,
2014). That is to say, while specific branches do not form in the
same 3D space at the same developmental time, the extent of
ramification of the ureteric tree is highly similar between one organ
and the next. These observations suggest that a constrained program
of patterning drives the elaboration of the UB.Received 28 April 2017; Accepted 5 October 2017
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In order to understand how mouse ureteric tree patterning is
repeatable, we have combined three-dimensional imaging, spatial
quantification and mathematical modelling to develop a class of
state-based mathematical models that describe the bifurcation and
elaboration of ureteric trees. We then compared our models that best
describe normal branching against ureteric trees from mice carrying
mutations in genes thought to be crucial to shaping the branching
process. Although highly stereotypical, the self-similar nature of the
branching pattern we describe indicates that branching occurs under
the influence of local rules, which is consistent with an emergent
pattern arising from interaction between neighbouring epithelial and
mesenchyme niches. We also show that the characteristic
asymmetry of branching in both wild-type and mutant kidneys is
linked to the relative positioning of the tips, which is consistent with
inter-tip suppression of bifurcation. Taken together, these findings
show that elaboration of the ureteric tree occurs by way of a
previously unrecognized but highly reproducible pattern of
branching that contributes to the form and structure of the kidney.

RESULTS
Branching asymmetry is consistent across location and age
We imaged ureteric trees from embryonic mice using optical
projection tomography and quantified branching using Tree
Surveyor software (Short et al., 2013). We analysed wild-type
patterning in 32 C57BL/6J embryonic ureteric trees from E11.5 to
E15.5. In observing the ureteric tree pattern, we noticed that each
bifurcation led to significantly more tips from one child branch than
the other, in a ratio that was broadly invariant. To quantify this, we
defined the weight of a bifurcating branch point as the number of
tips descending from it and defined its balance as the ratio between
the larger and smaller child weights (Fig. 1A). We have previously
proposed that the initial branches that establish the basic six-clade
structure of the organ are distinct from further branching within
clades (Fig. 1B) (Short et al., 2014). To examine this, we used our
measures of weight and balance to study the root node as well as root
branch points that establish the five ancestor and six-clade
bifurcations that define the basic structure of the kidney. We refer
to these as the 11 primary branch points and consider them
separately from the other intra-clade branches that make up the vast
majority of the ureteric tree (Fig. 1B). Branching at the ureter root
node is significantly more symmetrical than in later generations
(balance=1.18±0.18, mean±s.e.m.), with no anterior or posterior
bias (P=0.495, paired t-test on log weight of anterior and posterior),
whereas the next branches are substantially more asymmetrical than
later generations (balance=2.21±1.20), principally because they
define the clade structure of the organ (Fig. 1C). The remaining
primary branch points have very similar balance (1.49±0.46,
Fig. 1D). With the exception of the earliest developmental stage,
balance at each of the primary branch points remains the same
across developmental time (P>0.24 for linear regression against age
as continuous or nominal variable, controlling for clade).
We next examined the balance of branches within individual

clades, which make up the majority of the mature ureteric tree. In
contrast to the variation we saw between many of the primary
branches, the balance within clades was remarkably similar when
comparing clades from all organs as a single dataset (balance=1.25±
0.17, Fig. 1E): i.e. on average, the balance of any branch point
within any clade is no different to any other branch point in another
clade (P=0.98, ANOVA). The extensive reorganisation and branch
resorption associated with the formation of the renal pelvis (Short
et al., 2013) precludes the production of a ‘normally’ arborized
ureteric after E15.5 (i.e. early branch generations are thereafter

missing). However, to examine whether balance is maintained later
in development, we investigated peripheral branching in four E16.5
kidneys. These organs have, on average, 1292 tips, which means
that they are approximately one generation away from the cessation
of branching. Using these data, we quantified balance in the three
most distal branching generations (inverse generation 2,3,4 by our
schema) and found no significant difference compared with
younger organs (mean balance=1.252, P=0.1867 for a t-test on
kidney means). This indicates that branching within clades occurs
through the establishment of a constrained, asymmetrical and self-
similar pattern of elaboration at least until the very latest stage of
branching morphogenesis. The conservation of balance over time,
irrespective of location within the organ, suggests that the
elaboration of the ureteric tree occurs in a highly controlled
manner after the initial establishment of basic organ pattern (through
the primary branch points).

Tip state models
The conserved branching asymmetry we observe suggests that a
consistent, locally operative mechanism defines a consistent pattern
of branching morphogenesis that drives renal development.
Although other biological systems such as the mammary gland
have been successfully modelled using stochastic approaches
(Scheele et al., 2017), after consideration these were found to not
be appropriate in the case of the kidney, for reasons outlined later in
the Discussion. Instead, we developed theoretical ‘tip state’ models
to represent the evolution of the branching tree over time, with a
view to describing our biological data. These models posit that a
given tip exists in a state governed by rules that define whether it
either matures or bifurcates as development progresses and what
state it next assumes. The simplest such model is the unique non-
trivial ‘single state’ model giving a family of trees with uniform
bifurcation, which we call perfect. Because by definition this cannot
model the systematic asymmetry observed in the analysis of our
experimental models, we then considered ‘two-’ and ‘three-state’
models. There are two distinct two-state models and 34 distinct
three-state models (see supplementary Materials and Methods for
details and a classification of all models with up to three states).

We assessed all of these and found only three that have a single
bifurcating state with non-terminating child states. Such generalized
delay models have the desired property that balance converges to a
single asymptotic value as weight increases. Two of these were
considered plausible candidates for modelling the ureteric tree: a
two-state model, which we term the ‘Fibonacci’, in which the
weight of all trees and sub-trees are Fibonacci numbers (Fig. 2A);
and a three-state model that we term the ‘half delay’, the behaviour
of which is outlined in Fig. 2B. The Fibonacci model has asymptotic
balance ≈1.618 (the golden ratio), while the half-delay model has
asymptotic balance ≈1.325. The third delay model has asymptotic
balance ≈2.148, which is outside the observed range in ureteric
trees. In all cases, the smaller trees produced by these models have
balance values that differ from the asymptote and from each other,
owing to a discrete weight effect.

The half-delaymodel provides best global fit to ureteric trees
To define how these models of branching describe the behaviour of
the ureteric bud in vivo, we compared the Fibonacci and half-delay
models with our biological dataset using an optimal overlay
algorithm (Lamberton et al., 2015), using the perfect model as a
baseline. This approach computes a matching score between 0 and 1
for each pair of tree structures (Fig. 3A,B). We applied this method
by clade, such that for every ureteric tree each of the six clades was
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overlaid with the closest tree by size from the selected model. We
then calculated the overall matching score for the whole tree. When
such a comparison was performed using our wild-type datasets, the
best observed fit was the half-delay model that had a matching score
between 0.74 and 1.0 depending on developmental stage; Fig. 3C
shows an example of a subtree with an exact matching to the half-
delay model. To understand the nature of the small amount of
discordance between the model and in vivo branching of the ureteric
bud, we undertook a program of pairwise matching between the
model and wild-type data. For each developmental stage and clade
type, we isolated the corresponding set of clades then identified the
half-delay tree with best average matching score and added this tree
to the set. We asked which member of this augmented set was best
matched to all of the other members and then termed this the
centroid (Lamberton et al., 2015). Using this approach we found that
of the 36 cases (six clades and six developmental stages), the half-
delay model was the centroid in 29 (80.6%), was the second ranked
in six cases and third in only one (Fig. S1). This indicates that the
model trees are ‘in the middle’ of the experimental ones that vary
around them and that the half-delay model almost perfectly

represents the majority of branching morphogenesis in the ureteric
tree.

Sub-tree analysis provides a detailed developmental
pathway of branching morphogenesis
To define the normal developmental program that gives rise to the
mature ureteric tree, we took advantage of our datasets to capture
snapshots of the average branch pattern. The frequency of each
subtree type was calculated across the entire dataset and the centroid
for each weight identified as the single most representative structure
(Fig. 4, top row). Although multiple tree structures occur at all
weights above three, in each case the distribution is dominated by
either one or two patterns (Fig. 4, for weights up to 12). In the latter
instance, this always represents only a transient divergence.
Strikingly, for the subtree weights that can be described by a half-
delay tree model, the half-delay model dominates the distribution
for that weight (see Fig. 4 weights 3, 4, 5, 7, 9 and 12). Similar
calculations at weights 16 and 21 (the other half-delay examples)
also found that that the centroid trees are the half-delay models of
those weights (Fig. S2). This indicates a definable sequence of
growth in the kidney, with the addition of a bifurcation at each step
(green in Fig. 4) that is centred on the half-delay model.

Geometry of asymmetrical branching
One explanation for the asymmetry we have observed in whole
clade and subtree analyses is that bifurcation of a given tip may be
locally inhibited by its neighbours. If this were the case, we would
expect the most closely related tips in the tree structure to provide
the greatest local influence on growth and bifurcation, and hence
expect a relationship between sibling node imbalance and the
position of the next most closely related tips. To test this hypothesis,
we analysed all pairs of sibling nodes with unequal weight (32
kidneys, 1963 pairs) and identified the common parent node p and
its sibling, p′ (Fig. 5A,B). In the original pair of sibling nodes, we
call the node that is spatially closest to p′ the inner sibling (b), which
corresponds to the angle θ1 being greater than θ2 (Fig. 5A,B). If
inter-tip suppression is driving asymmetry, we would expect the
inner sibling to face stronger inhibitory signals and to have a lower
weight (i.e. less branching). Analysis of these sibling pairs

Fig. 1. Quantification of branching asymmetry in developing kidneys. (A) Branching asymmetry is quantified at each binary branch point (red) as the ratio
between the larger (blue) and smaller (green) child sub-tree weight (number of tips). (B) Balance is calculated for the 11 primary branch points that define the
six-clade structure. (C) Primary branch point balance (n=32,32,32,32,32,30,31,31,30,30,29 for groups in order listed). (D) Average primary branch point
balance by limb stage (n=56,54,77,55,55,44 for stages 7-12, approximate ages E11.5, E12.5, E13.25, E13.75, E14.5, E15.5). (E) Average balance within each
clade (n=27,29,30,29,26,28 for clades in order listed). Data aremean±s.e.m. calculated across kidneys. P, posterior; A, anterior; M,major; m,minor; L, lateral. In C
and E, data are pooled over stages 7-12, including each branch point or clade in which branching has occurred.

Fig. 2. Tip state models. (A) Tip state rules and initial sequence for the
Fibonacci model. (B) Tip state rules and initial sequence for the half-delay
model. Colours represent tip states; branch points have no state and are shown
in black. See supplementary Materials and Methods for formal definitions.
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described such a scenario in 69.9% of cases (n=1963), supporting
this hypothesis. In addition, nodes are not generally co-planar, as
depicted in Fig. 5, meaning that a and b could be almost equidistant
from p′ (Fig. 5B). To correct for this we defined near-planar
branches where the inner sibling is more strongly ‘between’ p′ and a
as those where the θ1/θ2 difference is above 45°. In these cases, the
proportion in which the inner sibling weight is lower rises to 83.5%
(n=571), a relationship that is apparent at all of the developmental
stages we examined (>66% at each stage).
To test whether the delayed bifurcation of the inner sibling is just

the result of generally slowed growth, we compared the branch
lengths in pairs of near-planar sibling nodes (in Fig. 5A,B we
compare the lengths from p to a and p to b). In cases where both
siblings have bifurcated, the inner sibling is longer in 65.5% of cases
(median difference 14.6 µm or 19.5%), indicating that a failure to
branch resulted in continued lengthening. To further clarify this
observation, we considered node pairs in which neither sibling has
branched (i.e. a and b in Fig. 5A are both tips). Doing so allowed us

to consider tip extension in isolation from bifurcation and in such
cases little difference in length was seen: the inner child is instead
shorter in close to half of cases (56.9%) and the median difference is
much smaller than in siblings that have bifurcated (only 3 µm or
5%). Based on these findings, we conclude that the local cues that
we propose to inhibit tip bifurcation have little or no impact on the
rate of tip extension.

Divergence from normal patterning in mutant phenotypes
We next wished to address how the pattern of branching
morphogenesis we observed during kidney development is
established, with a view to understanding its genetic basis and
robustness in the face of perturbation. On the basis that local cues are
likely to influence patterning, we analysed mutants in which the
environment of tips on the organ surface are altered. The first
selected was bone morphogenetic protein 7 (Bmp7−/−), an inhibitor
of nephron progenitor cell differentiation (Tomita et al., 2013;
Muthukrishnan et al., 2015) produced by cells in the UB epithelia

Fig. 3. Overlay analysis supports half-delaymodel. (A) Example optimal overlay between E14.5 ureteric tree and half-delaymodel (by clade); overlap is shown
in blue (536 edges), model-only edges in green (40), real tree-only edges in red (58). Matching score is 536/(536+40+58)=0.845. (B) Overlay analysis of biological
data against models shows the best match between ureteric tree structure and the half-delay model, out-performing the Fibonacci and perfect models
(n=6,5,7,5,5,4). (C) Sample weight 12 subtree from stage 11/E14.5 wild-type data with half-delay structure. This structure is shown schematically in Fig. 4 (weight
12, far right).

Fig. 4. Sub-tree analysis of wild-type kidney sub-trees indicates that stereotypical growth closely matches half-delay model. Within each weight group
(columns), tree structures with relative frequency >10% are shown, annotated with the relative frequency and whether they are produced by the perfect, Fibonacci
or half-delay model (some structures are produced by more than one model). Weights for which a half-delay model exist are marked in purple. Centroid trees are
on the top row. Arrows indicate potential developmental pathways. New edges at each stage of this pathway are shown in green.
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and associated mesenchyme, and whose germline inactivation leads
to renal hypoplasia (Dudley et al., 1995). Knockdown of expression
in cultured organs results in fusion of ureteric tips and hence the
molecule has been proposed to be essential in a tip-avoidance
mechanism in the developing organ (Davies et al., 2014). The
second was sprouty 1 (Spry1−/−), a receptor tyrosine kinase
inhibitor expressed in the ureteric bud tips (Zhang et al., 2001)
that plays a central role in modulating cell signalling downstream of
the Ret, a co-receptor for GDNF (Basson et al., 2005). Gene
knockout results in precocious UB development and accelerated
branching morphogenesis (Basson et al., 2005). Finally, we studied
mice carrying heterozygous loss-of-function mutations in
transforming growth factor β 2 (Tgfb2+/−), a molecule expressed
predominantly in the ureteric epithelium (Pelton et al., 1991). Tgfb2
haploinsufficiency results in hypoplasia characterized by reduced
branching and developmental delay (Short et al., 2010).
To examine the relationship between tip spacing/environment

and developmental patterning of the branching ureteric tree, we
collected foetal kidneys from Bmp7−/− (E14.5), Spry1−/− (E13.5)
and Tgfb2+/− (E14.5) embryos and subjected them to OPT imaging
and Tree Surveyor analysis as per the wild-type sample cohort used
in our analysis of branch patterning (see supplementary Materials
and Methods for basic metrics). Mutant kidneys of all three
genotypes were found to be smaller than controls (Fig. 6A-C,
Movie 1). To examine how this related to the physical environment
in which the tips reside, we computed a surface area for each ureteric
tree using a convex hull around the organ using the tip coordinates to
establish the tree boundary (see supplementary Materials and
Methods), which confirmed the hypoplasty in these organs
(Fig. 6E). When tip environment was expressed as a surface area

per tip ‘occupancy’, we observed no change in Tgfb2 kidneys
(12,059±1453 µm2 versus 10,396±351 µm2,P=0.56), an increase in
Bmp7 kidney (27,292±2844 µm2 versus 11,783±489 µm2,
P=6.8×10−6) and a decrease in Spry1 kidney (6761±1038 µm2

versus 12,192±445 µm2, P=0.0044) (Fig. 6F). These observations

Fig. 5. Geometrical analysis of branching asymmetry. (A) For each pair of
sibling nodes, the inner sibling occupies the interior position with respect to the
‘aunt’ node sibling p′, determined by the smaller angle θ. If θ1−θ2>45°, then we
say that the branching at p is near planar. (B) Illustrative examples of branching
geometry in wild-type ureteric trees. In the first example (left), there is little
distinction between inner and outer siblings, whereas in the second example
(right), the branching is near planar and the distinction is clear.

Fig. 6. Mutant phenotypes. (A-C) Sample mutant kidneys (top row) with wild-
type controls (middle row) and alternative wild-type comparison kidneys
matched by tip number (bottom row). (A) Tgfb2+/− (E14.5); (B) Bmp7−/−

(E14.5); (C) Spry1−/− (E13.5). Scale bars: 500 µm. (D-F) Changes in (D) tip
number, (E) surface area and (F) surface area per tip. Each plot shows
estimated median proportional change from wild-type controls (dashed line)
with 95% confidence interval, using a Wilcoxon rank sum test on the log
transformed metrics (displayed in log scale, marked values are linear scale).
(G-I) Ratio between nearest non-sibling neighbour (nn) distances in pairs of
sibling tips, averaged by kidney and plotted against mean non-sibling nearest-
neighbour distance over the same set of tips for Tgfb2+/− (G), Bmp7−/− (H) and
Spry1−/− (I). For each pair of tips, the distance from each sibling to the nearest
other tip (excluding each other) is determined; the nearest neighbour distance
ratio is the larger of these two distances divided by the smaller. Control/test
group sizes are: Tgfb2+/− , 5/4; Bmp7−/−, 12/9; Spry1−/−, 12/3.
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are consistent with the respective hypoplasty and increased
branching previously reported for these genotypes (Dudley et al.,
1995; Basson et al., 2005). Importantly, differences in occupancy
were still observed when mutant kidneys were instead compared
with wild-type organs with comparable tip numbers (Fig. 6A-C,
Movie 1), suggesting that such changes are not simple products of
developmental delay but instead represent genetically encoded
mediators of tree morphology (Fig. S3A). Notably, we observed no
evidence for tip fusion or ‘collision’ in Bmp7mutant kidneys, as has
been reported in cultured organs (Davies et al., 2014). In fact, the
surface area occupied per tip in the Bmp7 samples was considerably
greater than in wild-type samples (see Fig. 6). Consistent with this
observation, the average distance between tips was increased by
25.17 µm when compared with age-matched controls [95% CI
(18.36,32.08), P=6.8×10−6] and by 17.42 µm when compared with
wild-type kidneys with equivalent tip numbers [95%CI (9.94,24.84),
P=2.0×10−4]. Differences in branching morphogenesis between
cultured kidneys and organs dissected from mutant embryos are a
feature we have noted before in several other mutants (Short et al.,
2013). These may reflect artefactual products of anlage culture
systems derived from tissue compression that interrupt the normal
spatial arrangement of tissues and cells in the developing kidney.
Although the average distance is greater in Bmp7, we also

considered how uniformly distributed the tips on the surface of each
of the kidneys are for all genotypes. To determine this, we analysed
the relative distance ratio of the closest and furthest neighbour tips
from pairs of sibling tips. While this measure was unchanged when
comparing Tgfb2 kidneys and controls (1.145684 versus 1.131798,
P=0.1111, Fig. 6G), we noted significant differences between Spry1
and Bmp7, and age-matched controls (1.161907 versus 1.120212,
P=0.0485 and 1.218161 versus 1.122488, P=1.361×10−5, Fig. 6H,I).
We interpret this to mean that the distribution of tips on the surface
of these organs is less even.
Having identified mutants with altered tip spacing and

distribution, we employed overlay metrics to determine whether
these changes in the tip environment and in branching dynamics
resulted from, or were the consequence of, perturbation of the half-
delay patterning we had described in wild-type organs. The average
balance was calculated for each kidney (Fig. S4) and each mutant
group was compared with the age-matched wild-type control group
(Fig. 7A). The Tgfb2mutants show no detectable change in balance,
consistent with our previous overlay analysis (Lamberton et al.,
2015), but increases in branching asymmetry were observed in the
Bmp7 and Spry1 mutants. Comparisons were repeated using size-
matched controls (by tip number), with similar results (Fig. S3B).
We then repeated the centroid analysis previously employed to
characterise the wild-type dataset, examining the Bmp7 and Spry1
mutants for each of the six clades. For each mutant group, the
selected cladewas isolated from each kidney, and the resultant set of
clades was augmented with the closest matching model tree (in this
case either half delay or Fibonacci) before finding the centroid. In
both cases, the half-delay model was the centroid in only 33% of
clades (two out of six) as opposed to >80% of wild-type organs at
the same developmental stage (29 of 36 cases, Fig. S1). In contrast,
when the Fibonacci model was used to classify the clades, it was the
centroid in 50% of cases for Spry1 (three out of six) and ∼83% of
cases for Bmp7 (five out of six). This modification in renal
patterning is also reflected in the distribution of branch balances for
different sub-tree sizes (Fig. 7B), where a greater imbalance in the
mutant trees is evident. Hence, in both the Spry1 and Bmp7 kidneys,
where there is a significant change in the spacing of tips on the organ
surface, there is a definite shift from the wild-type half-delay model

towards the Fibonacci model. This itself represents a change in the
relationship between the extension and bifurcation rates in the
mutant trees.

DISCUSSION
Branching morphogenesis is a commonly employed developmental
mechanism that establishes the airways of the lungs, the ductal
network of glandular organs and the collecting duct network of the
kidney. In all cases, the epithelial networks present in these organs
are established by way of the arborisation of an initial epithelial bud,
usually within a supporting population of mesenchymal cells. The
factors that mediate this elaboration and the manner in which it
occurs are only partially defined. In the lung, it has been proposed
that a rigid and genetically hardwired program of three different
branch types combine to form the airways. However, this pattern of
growth appears to differ fundamentally from the kidney, as there is
no recognizable and reproducible structure of the branched ureteric
tree (Short et al., 2014). Our previous studies have identified
similarity between different kidneys in the form of a higher order
clade structure and also in the extent of branching (Short et al.,
2014). In this study, we have sought to understand whether (and to
what extent) this reflects a deeper underlying patterning that governs
the development of the organ.

We have established a mathematical growth model of ureteric tree
branching in which a stereotypical early structure is succeeded by a
branching pattern that is locally similar regardless of the position of
a branch within the ureteric tree and across developmental stages.
This pattern is characterized by a conserved level of branching
asymmetry, suggesting a common growth process acting at a local
level. This is consistent with our previous quantitative analysis of
branch sizes and geometry (Short et al., 2014), which similarly
shows substantial underlying regularity, with minor local variation.
The family of generative tip-state models that we have developed
comprise tip populations that either bifurcate or mature solely
according to their current state. These can be conceived more
generally as delay models (see supplementary Materials and
Methods), in which there is a characteristic difference in maturity
or time to bifurcation between the two child nodes formed by each

Fig. 7. Balance change in mutant phenotypes versus wild type.
(A) Estimated change in balance compared with wild-type controls. Median
with 95% confidence interval using Wilcoxon rank sum test on kidney means.
The kidneymean balance values used are shown in Fig. S4. Control/test group
sizes are: Tgfb2+/− (E14.5), 5/4; Bmp7−/− (E14.5), 12/9; Spry1−/− (E13.5),
12/3. (B) Distribution of node balance for each weight 4-8; weights 2 and 3 are
excluded as only one balance value is possible in each case. Data are pooled
across kidneys: 21 wild type (E14.5), nine Bmp7−/− (E14.5) and three Spry1−/−

(E13.5). The distribution of balance in the mutant phenotypes is distinct from
wild type across multiple node weights.
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bifurcation. Consequently, they possess the feature that the balance
at each branch point will converge to a fixed asymptotic value as
growth continues, and are well suited to modelling branching under
a common locally operative growth process. We have shown that a
three-state delay model (which we term ‘half delay’) recapitulates,
with a very high degree of accuracy, the pattern of branching
established by imaging biological samples. This encompasses
measures of balance that are shared between and within the clades of
the organs. Importantly this model accurately describes the
structure, both on the global (Fig. 3) and local (Fig. 4) scale.
Our analysis suggests that an initial idiosyncratic phase of

stereotypic UB branching occurs early in development and
establishes the clades of the organs. The organization and balance
of these branches is clearly distinct from later bifurcation events. At
this point, the UB invades a discrete and relatively large and
uniform region of SIX2+ GDNF-producing mesenchyme. We
propose that the early branching pattern and the establishment of
clades occurs in response to the pre-existing shape and relative
uniformity of this field of cells. However, by E12 the SIX2+

population begins to condense around the growing tips to form
discrete cap mesenchyme populations, which are then a feature of
organ development until the termination of nephrogenesis at P4 in
the mouse. During this period of development, the tips are confined
to, and evenly arranged within, a thin zone on the surface of the
growing kidney. We propose that this environment is conducive to
the establishment of locally operant cell signalling systems that
dictate the asymmetric pattern of branching morphogenesis we
observe in our analysis. Although the surface area and tip number
increase exponentially, the spacing between tips declines only
modestly in synchrony with the reduction in the size of the tip and
cap niches (Short et al., 2014). The fact that tip spacing is relatively
constant indicates coordination between tip extension and
branching: the two primary ureteric tree growth processes. A
natural hypothesis is that bifurcation of the growing tips is
suppressed to some extent by neighbouring tips and we propose
that such a mechanism further contributes to the patterned branching
we observe. The hypothesized mutual suppression of bifurcation by
the tips is supported by our geometrical analysis. Bifurcation is
delayed (but growth continues) in tips located between the most
closely related branches in the tree structure (node b in Fig. 5),
which we expect to have, on average, more and closer neighbouring
tips than their siblings (node a in Fig. 5). In this way relatedness in
the tree structure provides a useful proxy for tip spacing.
Furthermore, this comparison of sibling branches demonstrates
that the mutual suppression of bifurcation by tips may explain the
systematic and conserved branching asymmetry that marks the
branching structure.
Recent studies have demonstrated that the hierarchical patterning

of the mouse mammary gland can be modelled with a locally
operative, time invariant, stochastic growth process, in which
growing tips bifurcate or cease growth with near-equal probability
(Scheele et al., 2017). This report further suggested that a similar
process may drive renal branching morphogenesis. We find little
support for such a proposal. For example, there is no evidence of
stochastic termination of bifurcation or extension – branches do not
terminate ‘within’ the kidney and tips are all, by and large,
bifurcating on the organ surface at any given time (see Fig. 6 and
Movie 1). Furthermore, cell proliferation in all of the tips of the
branching UB is actively maintained until the cessation of
nephrogenesis at postnatal day 4 (Short et al., 2014), in a manner
that relies on signals from the cap mesenchyme (Cebrian et al.,
2014). The possibility that the observed asymmetry may arise from

a random process was also considered. The clearest evidence against
this hypothesis (and on derived models in which the timing of
random branching is shaped by a specified probability distribution)
is found in the geometrical analysis of sibling subtree clusters (see
Figs 3 and 4). As we can predict which sibling subtree is most likely
to be larger based on their positions relative to related tips, a purely
random process can be excluded. However, ultimately the strongest
argument for this approach is that we were able to provide an
excellent fit to the centre of the distribution of real data (see centroid
analysis). In these analyses the half-delay model trees were
generally a better fit to the experimental data than were any of the
individual experimentally determined trees. The remaining option
for a stochastic model would be to add some degree of randomness
to the half-delay model. Although this might be an accurate
representation of the observed biological variation around the
identified stereotypical pattern, the lack of any systemic difference
between our deterministic model and the data indicated that fitting
such a model would not further improve the description.

Taken together, these observations are entirely inconsistent with a
model based on stochastic cessation of branch growth and/or
bifurcation. Instead, we propose that there are much broader
similarities between branching morphogenesis in the kidney and
lung. Unlike the mammary gland, branching morphogenesis in
these organs is particularly characterized by the involvement of
highly specialized mesenchymal cell populations that produce
factors that drive cell proliferation and branching of their respective
epithelial networks. In support of this notion, we have found that the
tip state models developed in this study are able to generate
hierarchical structures like the domain branching seen in lungs (see
supplementary Materials and Methods: three state models).
Although further modelling and comparison with biological
samples will be required to determine the full extent to which
such models can describe pulmonary development, our findings
suggest a commonality between branching in these organs and
highlight considerable differences with the mammary gland.

Our analyses of mutant kidneys say much about the nature of
patterning that governs the normal development of the kidney. They
imply that alterations in the rate of organ growth do not necessarily
perturb patterning. While haplo-insufficiency for Tgfb2
significantly abrogates kidney growth, by ∼24 h (Lamberton
et al., 2015), we observe no differences in the pattern of
systematic asymmetry in branching identified in this study. In
most respects, these organs, although small, are perfectly formed –
suggesting that genetic control of organ growth is not intrinsically
linked to patterning of the branching UB. In contrast, changes in
Bmp7 and Spry1mutants result in changes in branch patterning from
a half delay to a pattern more closely approximating a Fibonacci
model. Although the surface areas per tip of each model are larger
(Bmp7) and smaller (Spry1), both models share the feature of more
uneven tip distribution on the organ surface. This suggests that the
normal factors governing tip distribution are somehow ameliorated
in both organs. This might be through a reduction in suppressive
actions of a protein that prevents the incursion of one tip into the
field of another (as may be the case for Bmp7) or in the loss of
factors that normally control the unchecked bifurcation of tips (as
may be the case for Spry1). In both cases, a change in the uniformity
of tip spacing is associated with altered branch patterning. At this
point, we cannot say with certainty whether the alteration in
patterning is a cause or a consequence of the change in the
uniformity of tip distribution. However, given that the patterning is
effectively determined by the decision of a tip to bifurcate or grow
(which is likely locally determined), we favour the former model in
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which the uniform distribution of tips on the organ surface dictates
the systematic asymmetry we observe in the ureteric tree.
What biological factors might contribute to the half-delay models

that describe patterning of the elaborating ureteric tree? The
different ‘nodes’ in this scheme effectively represent points at
which a given branch bifurcates or grows. Such states effectively
represent different degrees of developmental delay (see
supplementary Materials and Methods for approaches to
modelling different delay to bifurcation time ratios). It is likely
that both biophysical and molecular cues contribute to the decision
of a given tip to bifurcate or to extend. The size of the organ surface
effectively establishes the field in which such tip-tip interactions can
occur and although it might be expected that this is defined by the
extent of ureteric branching, our findings demonstrate that this is not
the case: increased and decreased branching do not necessarily
imply increased or decreased organ size. At the level of the tip, the
bounding basement membrane likely constitutes a structure that is
able to sterically impact adjacent tip environments. It is tempting to
attribute similar features to the surrounding cap mesenchyme that
(at least in section) appears as a ramified buffer between
neighbouring tips. However, recent studies suggest that this cell
population is dynamic and motile, which may reduce its steric
impact on neighbouring tips (Combes et al., 2016). Equally, the role
of the stromal cells – which sit between cap/tip populations – has
been relatively poorly studied, although they are known to regulate
branching morphogenesis in a non-cell-autonomous manner
(Paroly et al., 2013; Mukherjee et al., 2017). Studies to assess the
in vivo forces and tensions created by juxtaposed cap/tip/stromal
niches and their respective cells are required to assess their
biophysical impact on patterning. Considerable recent conceptual
and experimental advances have extended our understanding of the
cellular events that underlie bifurcation in branching epithelia
(Ihermann-Hella et al., 2014; Menshykau et al., 2014; Huebner
et al., 2016; Lin et al., 2017). Linking these to the emerging picture
of shared and organ-specific growth factor production in the tips of
branching epithelial networks (Rutledge et al., 2017) will therefore
be important for integrating how these combine to direct the
exquisite patterning we describe in the developing kidney at a whole
organ level.

MATERIALS AND METHODS
Sample collection, staining and imaging
Embryonic mice from heterozygous Tgfb2tm1Doe, homozygous
Bmp7tm1.2Dgra, homozygous Spry1tm1Jdli and wild-type C57BL/6J kidneys
were collected, stained and imaged as previously described (Combes et al.,
2014) with ages and sample numbers outlined in Table S1. Limb staging
was used to broadly confirm age in most of the embryos and also to
subclassify them based upon developmental progression (Wanek et al.,
1989). Kidneys were stained using anti pan-cytokeratin (Abcam, AB11213;
1:300) and anti Trop2 (R&D Systems, AF1122; 1:100) with Alexa Fluor
secondary antibodies (Life Technologies), followed by OPT imaging
(Bioptonics). All animal procedures complied with standards set under
Australian, US and Canadian federal and state guidelines for animal welfare,
and experiments were approved by the relevant Animal Ethics Panels of
Monash University, Columbia University and the University of Alberta.

Sample data analysis and representation
Reconstructed ureteric tree datasets were mapped and quantified in 3D using
Tree Surveyor software (Short et al., 2013). Tree Surveyor software is
available to academic and not-for-profit researchers. GraphML data was
exported, providing a representation of each tree in the form of nodes
(branch points and tips) and edges between them (branch segments),
annotated with information on size and position. The root node of the graph
is the point where the ureter first branches, and defines an orientation of each

edge from a start node, which is closer to the root, to an end node, which is
further away. The start node is the parent of the end node, and the end node is
the child of the start node. Each of the 11 primary branch points (Fig. 1B)
were annotated on the ureteric tree graphs based on their relative position in
the kidney the graph was derived from, also identifying the six-clade
structure previously described (Short et al., 2014).

Computational analysis
Graph overlays and pairwise comparisons were performed as previously
described (Lamberton et al., 2015) using MATLAB and R code. All other
analyses described were performed in R, including generation of tip-state
model tree structures used in overlay analysis with real data. See
supplementary Materials and Methods for details of tip state model
definitions, properties and enumeration. Example model trees used in
overlay analysis were generated in R.
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SUPPLEMENTARY MATERIAL 

1. Data

Analysis is based on a data set of 32 wild type C57BL/6J fetal mouse kidneys of embryonic age E11.5 to 

E15.5 and an additional 28 mutant and control samples (all on an inbred C57BL/6J background, see Table S1). 

Table S1. Mouse ureteric tree data used. 

Group Approximate Age 
(embryonic day) 

Limb 
Stage 

Samples tip number 
(mean ± stdev) 

Wild type time series 11.5 7 6 13.5±5.4 

Wild type time series 12.5 8 5 25.0±2.9 

Wild type time series 13.25 9 7 85.7±18.6 

Wild type time series 13.75 10 5 116.2±15.8 

Wild type time series 14.5 11 5 224.8±45.1 

Wild type time series 15.5 12 4 621.3±35.8 

Wild type time series total 32 

Tgfb2+/- mutant 14.5 11 4 106.0±23.2 

Bmp7+/+ control 14.5 11 12 247.9±71.4 

Bmp7-/- mutant 14.5 11 9 58.3±19.0 

Spry1-/- mutant 13.5 9/10 3 121.3±12.6 

Mutant / control total 28 

2. Statistical notes

Statistical analysis was performed using the R programming language and RStudio environment. All t-tests 

were two-sided and unpaired, using the Welch adjustment for possibly unequal variance (using the t.test 

function in R with default parameters). Linear regression and ANOVA was performed with the lm function 

in R (using the f-statistic).  

Age and size matched controls 

Dedicated control groups were available for the Bmp7 mutants, while the Spry1 and Tgfb2 mutants were 

compared to age matched data from the wild type time series data. For Spry1, the combined E13.25 and 

E13.75 wild type data was used. 

For some analyses, size matched alternative controls (based on tip number) were also used, to test 

whether observed differences in the mutant groups could be explained as the result of a general delay in 

development. The E14.5 Tgfb2 mutant was compared to the combined E13.25 and E13.75 wild type data, 

and the Bmp7 mutant to the combined E12.5 and E13.25 wild type data. The Spry1 mutant did not differ 

substantially in tip number from the age matched control group, so no alternative control was used. 
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Mutant comparisons 

Mutant phenotypes were quantified by a comparison of kidney level metrics between mutant and control 

groups. The large variation between samples in some mutant groups did not appear consistent with a 

normal distribution, so a Wilcoxon rank sum test was performed using the R function wilcox.exact from 

package exactRankTests. This function produced the estimate and 95% confidence interval for the median 

difference, used in Fig. 6, Fig. 7 and Fig. S3.  

Surface area was calculated for a convex hull on the set of tip points, using the R function convhulln from 

the geometry package, which interfaces the Qhull library (Barber, Dobkin et al. 1996). 

For the number of tips per unit surface area and balance metrics, we are interested in difference 

compared to both age and size (tip number) matched wild type kidneys. In Fig. 6 and 7, the standard (age 

matched) controls were used; the alternative comparisons using size matched controls are shown in Fig. 

S3. 

 

3. Tip state models 

A tip state model is defined by a finite set of tip states, a specified initial state, and a transition rule which 

deterministically maps each state to a set of one or more new states. The transition rule is applied to 

produce a sequence of rooted trees (Epp 2004) in which each tip has an associated state from the allowed 

set; the first tree in the sequence consists of a single tip with the specified initial state. At each iteration, 

the rule is applied independently and simultaneously to each tip. If the current state of a tip is mapped to 

a single new state, then only the state is changed. If the tip state is mapped to more than one state, then 

child nodes are added to the tip with the assigned states; the original node is no longer a tip and does not 

have an associated state. The order of child nodes is not important, as we are ultimately concerned with 

distinct structures only up to graph isomorphism (Epp 2004). A state which is mapped to more than one 

new state is a branching state. 

Tip state is an internal parameter which is used to generate the trees but is ultimately discarded, as it is 

unobservable in real trees; we say that two trees are isomorphic (written ≡) if they are graph isomorphic, 

with tip state ignored if either or both trees possess it. Another potential source of ambiguity is that two 

models may produce the same tree structure at different positions in their generated sequences. Hence 

we define the family of rooted trees associated with a model to be the set of trees that occur in the 

generated sequence, with tip state ignored, which are distinct up to graph isomorphism. Tip state models 

which produce the same family of trees (up to isomorphism) are considered equivalent, and a model 

which is equivalent to a model with fewer states is degenerate, and excluded from the enumeration.  

It is possible that a tip state model will produce only a finite number of trees. If any branching state occurs 

which gives rise after some number of iterations to at least one tip with the same (branching) state, then 

the tree sequence produced is infinite. If there are k states, there can be at most 𝑘 − 1 iterations of the 

model in which branching occurs before such a loop arises. Thus models which fail to give an infinite 

sequence of trees give at most k distinct trees. We call such models trivial, and as with degenerate models 

we exclude them from enumeration. 
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Classification of binary tip state models 

Since we are modelling bifurcating tree structures, from here on we only consider binary models, in which 

each state is mapped to either one or two states; a bifurcating state is one which is mapped to two new 

states. In the following we develop some properties of these models, in particularly classifying all non-

equivalent binary tip state models with up to three states, and proving the asymptotic balance property 

of a class of tip state models.  

Notation 

We denote a tree consisting of a single tip of state 𝑎 by just writing 𝑎, relying on context to distinguish 

from the state 𝑎, and let (𝑇1, 𝑇2) denote a tree with more than one tip, in which the two children of the 

root node are the roots of subtrees of type 𝑇1 and 𝑇2. Note that this notation can be used recursively to 

specify any rooted binary tree together with tip states. We also use this notation with no state specified 

to denote tree structures where the tips do not have names or states; so for example () is the trivial tree, 

and (( , ), ( , )) is the symmetric tree with 4 tips. This is known as Newick notation (Krane 2003). 

For a given tip state model, the transition rule is formally an automorphism on the set of rooted trees with 

labelled tips. When the model in question is clear we denote this associated function f, so 𝑓𝑛(𝑇) is the 

result of 𝑛 consecutive transformations of an initial (tip labelled) tree T. We write 𝑇1 ↦ 𝑇2 as a shorthand 

for 𝑓(𝑇1) = 𝑇2.  

For a tree 𝑇 generated from a tip state model with 𝑘 states, the number of tips in each state can be 

represented by a state vector 𝒔(𝑇) ∈ ℤ𝑘. This requires an ordering of the states; we typically denote states 

with lowercase Latin letters and assume alphabetical ordering (of course reordering states will not 

fundamentally change the model). Since the result of transforming a tip is deterministic and depends only 

on its initial state, the state vector of 𝑓(𝑇) is a linear transformation of the state vector of 𝑇. That is: 

Lemma 1: For any binary tree state model, there is a unique 𝑘 × 𝑘 matrix 𝑀 such that 𝒔(𝑓(𝑇)) = 𝑀𝒔(𝑇).  

We refer to 𝑀 as the state transition matrix. Another immediate consequence of the transition function 

acting separately on each function is: 

Lemma 2: 𝑓((𝑇1, 𝑇2)) = (𝑓(𝑇1), 𝑓(𝑇2)) 

We now introduce the first non-trivial family of rooted binary trees. 

Definition: The nth perfect tree, denoted 𝑃𝑇(𝑛), is the completely balanced binary tree formed by 𝑛 − 1 

consecutive bifurcations of every tip, starting with a single node. Recursively, 𝑃𝑇(1) = () and 

𝑃𝑇(𝑛 + 1) = (𝑃𝑇(𝑛), 𝑃𝑇(𝑛)). 𝑃𝑇(𝑛) has 2𝑛−1 tips and 2𝑛-1 nodes in total. 

 

One-state models 

We begin the enumeration of binary tip state models by supposing there is only one possible tip state. In 

this case the only non-trivial model produces the perfect trees. 

Observe that any model with no bifurcating state will produce only the trivial tree, while a model where 

all states bifurcate will give 𝑓𝑛(𝑎) = 𝑃𝑇(𝑛). This immediately resolves the one-state case, and also gives 
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the following lemma. Recall that a degenerate model is one that is equivalent to (produces the same trees 

as) a model with fewer tip states, and we disregard such models: 

Lemma 3: Given any binary tip state model with more than one state, then if all states are bifurcating the 

model is degenerate, while if no states are bifurcating then it is trivial. 

 

Two-state models 

We show that there are two distinct models with two tip states (excluding trivial and degenerate models). 

One is the Fibonacci model (see Fig. 2A); the other produces trees consisting of a single “trunk” and a 

series of tips branching from it, which we call the singleton domain model. This “domain” branching is 

named for the pattern of trunk and offshoot branches seen in the lung (Metzger, Klein et al. 2008) but it 

is not capable of modelling ureteric tree structures. 

By Lemma 3, we can assume there is one bifurcating and one non-branching state. Up to isomorphism we 

have cases 

1. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑎, 𝑎) 
2. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑏, 𝑏) 
3. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑎, 𝑏) 
4. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑎, 𝑎) 
5. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑏, 𝑏) 
6. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑎, 𝑏) 

In theory each of these cases corresponds to two models, depending on the choice of start state. But if 

the start state is a then it will either be mapped to itself, giving a trivial model, or it will be mapped to b, 

producing the same sequence of trees with a delay of one time step as the model with start state b, and 

is thus equivalent to that model. So we need only consider start state b. In fact, we can assume for any 

model (not restricted to bifurcating models) that the start state is a branching state. Although in general 

it may take more than one iteration for an initial non- branching state to be mapped to a branching state, 

it will always be equivalent to the model starting at that branching state. 

Lemma 4: A tip state model with a non-branching initial state is either trivial or is equivalent to a model 

which has a branching initial state and is otherwise the same. 

Thus when enumerating distinct models, we assume that the start state is branching.  

Returning to two-state models and the six cases above, case 1 is trivial, while cases 2, 4, and 5 are 

degenerate (in cases 2 and 5  𝑓𝑛(𝑏) ≡ 𝑃𝑇(𝑛), while in case 4 𝑓𝑛(𝑏) ≡ 𝑃𝑇(⌊(𝑛 + 2)/2⌋)). Case 3 produces 

a new family with trees of the form (𝑎, (𝑎, (… (𝑎, (𝑎, 𝑏)) … ))). This pattern of repeated offshoots from a 

trunk is seen in the branching of organs such as the lung, and we refer to it as domain branching. But our 

2-state system cannot model further development of the offshoots. We call this minimal model singleton 

domain branching. 

This leaves Case 6, which we call the Fibonacci model.  

Definition: The nth Fibonacci tree, denoted 𝐹𝑇(𝑛), is defined recursively by 𝐹𝑇(1) = 𝐹𝑇(2) = () and 

𝐹𝑇(𝑛 + 2) = (𝐹𝑇(𝑛), 𝐹𝑇(𝑛 + 1)). 
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Case 6 produces exactly the set of Fibonacci trees: 𝑓𝑛(𝑏) ≡ 𝐹𝑇(𝑛 + 1). From the recursive definition of 

the Fibonacci numbers, the following follows immediately: 

Lemma 5: 𝐹𝑇(𝑛) has 𝐹(𝑛) tips, where 𝐹(𝑛) is the nth Fibonacci number. 

We have completed the 2 state classification: 

Theorem 1: The only non-trivial and non-degenerate 2-state binary tip state models are the Fibonacci and 

singleton domain branching models. 

Generalised delay models - single branching state 

Before we examine three-state models in detail we first consider a class which can be regarded as a 

generalization of the Fibonacci model. The Fibonacci model has a single branching state, with one child 

tip that branches at the next model iteration and the other child branching with the delay of one additional 

model iteration. Similar models with additional states allow variable delays before bifurcation.  

Suppose there is a single branching state c, and 𝑓(𝑐) = (𝑎, 𝑏), where 𝑎, 𝑏, 𝑐 are not necessarily distinct. 

Then we have 3 cases up to generality: 

1. 𝑓𝑝(𝑎) = 𝑓𝑞(𝑏) = 𝑐, for some 𝑝 ≥ 𝑞 ≥ 0. 
2. 𝑓𝑞(𝑏) = 𝑐 for some 𝑞 ≥ 0 but there is no 𝑝 such that 𝑓𝑝(𝑎) = 𝑐 
3. There is no 𝑝 or 𝑞 such that 𝑓𝑝(𝑎) = 𝑐 or 𝑓𝑞(𝑏) = 𝑐. 

 

Case 2 will produce the singleton domain branching trees (branching will be delayed but the tree 

structures produced are the same), and hence will be degenerate for more than 2 states, while case 3 will 

produce only the trees () and (, ). We are left with case 1, which we define as the generalized (𝑝, 𝑞) delay 

model. 

 

Definition: For integers 𝑝 ≥ 𝑞 ≥ 0, the (𝑝, 𝑞) delay model is a model with a single bifurcating state 𝑐, with 

𝑓(𝑐) = (𝑎, 𝑏) and 𝑓𝑝(𝑎) = 𝑓𝑞(𝑏) = 𝑐. The generalized delay tree 𝐷𝑇
𝑝,𝑞

(𝑛) is the tree structure 𝑓𝑛(𝑐), 

produced by the (𝑝, 𝑞) delay model. 

 

Lemma 6: The (non-degenerate) (𝑝, 𝑞) delay model will have 𝑝 + 1 states 𝑎, 𝑓(𝑎), 𝑓2(𝑎), … , 𝑓𝑝(𝑎) = 𝑐, 

with 𝑏 = 𝑓𝑝−𝑞(𝑎).  

Proof: The listed states must exist and be distinct. Since this is sufficient to produce the delay trees, a 

model with more states is degenerate.  

Note that 𝐷𝑇
1,0(𝑛) = 𝐹𝑇(𝑛 + 1); the difference by one in the index is because the Fibonacci trees were 

defined to match the Fibonacci numbers (Lemma 5). The recursive definition of 𝐹𝑇(𝑛) generalises as 

follows: 

Lemma 7: 𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 + 1) = (𝐷𝑇

𝑝,𝑞(𝑚), 𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 − 𝑞)) for 𝑚 ≥ 0 

Proof: From the definition and Lemma 2,  

𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 + 1) = 𝑓𝑚+𝑝+1(𝑐) = 𝑓𝑚+𝑝((𝑎, 𝑏)) = (𝑓𝑚+𝑝(𝑎), 𝑓𝑚+𝑝(𝑏)) = (𝑓𝑚(𝑐), 𝑓𝑚+𝑝−𝑞(𝑐)) 

The result follows. □ 
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The perfect trees can also be regarded as the base case of the generalized delay model: 𝐷𝑇
0,0(𝑛) = 𝑃𝑇(𝑛). 

Thus we have categorised all models with a single branching state: 

Theorem 2: Any non-trivial binary tip state model with exactly one branching state will produce either 

singleton domain trees or a family of generalized delay trees. 

We now examine balance in the delay model. 

 

Theorem 3: The asymptotic balance at the branching points of 𝐷𝑇
𝑝,𝑞

(𝑛) as the weight tends to infinity is 

𝜆𝑝−𝑞, where 𝜆 is the (unique) positive real solution of 𝜆𝑝+1 − 𝜆𝑝−𝑞 − 1 = 0. 

 

Proof: We consider the root node of 𝐷𝑇
𝑝,𝑞

(𝑛) as 𝑛 → ∞. By Lemma 7, the balance at this node is 

the ratio between the weight of two smaller 𝐷𝑇
𝑝,𝑞

 trees, one of which is (𝑝 − 𝑞) iterations 

advanced from the other. Consider the (𝑝 + 1) × (𝑝 + 1) transition matrix M for the (𝑝, 𝑞) delay 

model. Assuming states are ordered 𝑎, 𝑓(𝑎), 𝑓2(𝑎), … , 𝑓𝑝(𝑎), M has ones in position (𝑖 + 1, 𝑖), 

𝑖 = 1,2, … , 𝑝, plus positions (1, 𝑝 + 1) and (𝑝 − 𝑞, 𝑝 + 1) in the last column representing the 

bifurcating state. This matrix has characteristic equation 𝜆𝑝+1 − 𝜆𝑝−𝑞 − 1 = 0. Since 𝑝 + 1 >

𝑝 − 𝑞 ≥ 0, M will thus have exactly one positive real eigenvalue 𝜆, which will be greater than 1. 

Therefore in the asymptote, the number of tips increases by a factor of 𝜆 in each model iteration 

(the corresponding eigenvector gives the asymptotic tip state proportions). Thus by Lemma 7, the 

asymptotic root balance is 𝜆𝑝−𝑞. 

The subtree associated with each branch point is itself a 𝐷𝑇
𝑝,𝑞

 trees, so this asymptotic property 

generalizes from the root to each branch point.  

 

Since 𝐹𝑇(𝑛) = 𝐷𝑇
1,0(𝑛), we have the following result: 

Corollary 1: The Fibonacci trees have asymptotic balance (√5 + 1)/2 ≅ 1.61 

 

Three-state models 

In this section we show that there are 34 distinct three-state bifurcating tip models, including one which 

is potentially useful for modelling ureteric trees, which we call the half-delay model. By Lemma 3, the non-

degenerate 3 state models have exactly one or two bifurcating states, so we consider these two cases in 

turn. 

We have shown that a single branching state implies that the only non-degenerate models are (𝑝, 𝑞) delay 

models. By Lemma 6 we have 𝑝 = 2, and hence 𝑞 = 0,1,2. The (2,2) delay model will give perfect trees 

so is degenerate. Hence we have two three-state models with a single branching state, the (2,0) and (2,1) 

delay models.  

By Theorem 2, the (2,1) delay model will have asymptotic balance ≅ 1.325, while the (2,0) delay model 

will have asymptotic balance ≅ 2.148 (the square of the asymptotic growth rate ≅ 1.466). Hence the 

(2,1) delay model is potentially useful for modelling ureteric trees, but the (2,0) delay model is not since 

it gives balance values outside the observed range. 
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We call the (2,1) delay model the half-delay; see Fig. 2B. 

In the remainder of this section we consider models with 2 branching states. Assume that states b and c 

branch, a does not. The cases are listed below up to generality, with each distinct, non-trivial and non-

degenerate model noted in bold; we confirmed that these 32 models are distinct by generating all trees 

with up to 200 tips for each model, and comparing the tip numbers and in some cases tree structures until 

we were able to distinguish all models. Two main groups are domain structures, where one branching 

state is strictly downstream from the other, and nested structures, where each branching state will give 

rise to the other (possibly with delay). Note that by Lemma 4, in each case listed below we have two 

starting starts to consider, b and c; we use ss to refer to the initial state. 

1. Both b and c branch symmetrically: this will give a perfect tree (note that all tips will have the same 
state at each step). Thus this case is degenerate. 

2. Exactly one of b and c branch symmetrically. Without loss of generality assume it is c. 
a. 𝑐 ↦ (𝑐, 𝑐); we consider only initial state b since c gives perfect trees (degenerate). 

i. 𝑏 ↦ (𝑏, 𝑐): Degenerate, produces perfect trees. 
ii. 𝑏 ↦ (𝑎, 𝑏): 

1. 𝑎 ↦ 𝑎: Degenerate, produces singleton domain trees.  
2. 𝑎 ↦ 𝑏: Degenerate, produces Fibonacci trees. 
3. 𝒂 ↦ 𝒄: Domain branching with a perfect tree at offshoots after single step 

delay; equivalent to a perfect tree with one pair of tips advanced beyond the 
rest.  

iii. 𝑏 ↦ (𝑎, 𝑐): 
1.  𝒂 ↦ 𝒂: Produces trees of the form (𝒂, 𝑷𝑻(𝒏 − 𝟏)), with a single tip plus a 

perfect tree arising directly from the root node.  
2. 𝒂 ↦ 𝒃: Produces a family trees similar to domain branching except that the 

offshoots are more advanced than the trunk. We can write this family 
recursively as 𝑻𝟏 = (), 𝑻𝟐 = (, ), 𝑻𝒏+𝟐 = (𝑻𝒏, 𝑷𝑻(𝒏 + 𝟏))  

3. 𝒂 ↦ 𝒄: Produces trees of the form (𝑷𝑻(𝒏), 𝑷𝑻(𝒏 + 𝟏)); both sides are perfect 
trees, but one is one step more advanced.  

b. 𝑐 ↦ (𝑏, 𝑏) 
i. 𝑏 ↦ (𝑏, 𝑐): Degenerate, produces perfect trees. 

ii. 𝑏 ↦ (𝑎, 𝑏):  
1. 𝒂 ↦ 𝒂: Gives trees consisting of two equal singleton domain trees descending 

from the root node, if ss=c. Degenerate if ss=b (produces singleton domain 
trees). 

2. 𝒂 ↦ 𝒃: Gives trees consisting of two equal Fibonacci trees descending from 
the root node, if ss=c. Degenerate if ss=b (produces Fibonacci trees). 

3. 𝒂 ↦ 𝒄: 2 Nested models 
iii. 𝑏 ↦ (𝑎, 𝑐):  

1. 𝒂 ↦ 𝒂: 2 distinct models: Resemble perfect trees with the addition of 
singleton offshoots off every node between each main branching generation; 
models vary on whether this occurs at odd or even generations. 

2. 𝒂 ↦ 𝒃: 2 distinct models: ss=b gives nested “3-cherries”; recursively,  𝑻(𝒏) =

(𝑻(𝒏 − 𝟐), (𝑻(𝒏 − 𝟐), 𝑻(𝒏 − 𝟐))); ss=c gives pairs of these trees descending 

from the root. 
3. 𝒂 ↦ 𝒄: 2 Nested models. 
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c.  𝑐 ↦ (𝑎, 𝑎) 
i. 𝑏 ↦ (𝑏, 𝑐): 

1. 𝒂 ↦ 𝒂: ss=b gives domain branching with 𝑷(𝟐) domains; ss=c trivial 
2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: ss=b gives domain branching with perfect domain subtrees; compared 

to 2a(ii)3 (𝒄 ↦ (𝒄, 𝒄), 𝒃 ↦ (𝒂, 𝒃), 𝒂 ↦ 𝒄) there is extra delay step, so more 
asymmetric; ss=c degenerate, gives perfect trees. 

ii. 𝑏 ↦ (𝑎, 𝑏):  
1. 𝑎 ↦ 𝑎: Degenerate (domain branching). 
2. 𝑎 ↦ 𝑏: Equivalent to 2b(ii)2: Fibonacci, or each half is Fibonacci. 
3. 𝒂 ↦ 𝒄: ss=b gives domain model with “slow growing” perfect tree offshoots; 

ss=c degenerate, gives perfect trees. 
iii. 𝑏 ↦ (𝑎, 𝑐):  

1. 𝑎 ↦ 𝑎: Trivial, produces {( ), (, ), (, ( )) } 

2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: ss=b gives both perfect trees and trees of the form (𝑷𝑻(𝒏), 𝑷𝑻(𝒏 +

𝟏)); ss=c degenerate, gives perfect trees only 
3. Both b and c branch asymmetrically.  

a. 𝑏 ↦ (𝑎, 𝑥) and 𝑐 ↦ (𝑎, 𝑦), for 𝑥, 𝑦 ∈ {𝑏, 𝑐}: Degenerate; gives singleton domain branching 
(states b and c are redundant). 

b. 𝑏 ↦ (𝑤, 𝑥) and 𝑐 ↦ (𝑦, 𝑧), for 𝑤, 𝑥, 𝑦, 𝑧 ∈ {𝑏, 𝑐}: Degenerate; gives perfect trees. 
c. 𝑐 ↦ (𝑏, 𝑐) 

i. 𝑏 ↦ (𝑎, 𝑏): 
1. 𝒂 ↦ 𝒂: ss=c gives domain branching where every domain is singleton domain 

tree; ss=b degenerate (singleton domain trees). 
2. 𝒂 ↦ 𝒃: ss=c gives domain branching where each domain is Fibonacci; ss=b 

degenerate (Fibonacci trees). 
3. 𝒂 ↦ 𝒄: 2 Nested models. 

ii. 𝑏 ↦ (𝑎, 𝑐): 
1. 𝒂 ↦ 𝒂: 2 Nested structures with repeated singleton offshoots; for ss=b tip 

numbers equal Fibonacci, but structure is distinct.  
2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: 2 Nested models. 

 

In total there are 32 distinct, non-degenerate 3 state models with 2 branching states. Of these, 20 are 

nested (these models are in pairs, with distinct models being produced depending on the initial state) and 

7 are domain branching structures with infinite or finite (but non-trivial) offshoots. The remaining 5 trees 

are equivalent to 2 state models with additional (finite) structure around the root.  

None of the models with two branching states had features that were observed in the ureteric tree data, 

although domain branching models may be of interest for modelling other structures such as the lung.  
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SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1: Comparison of the best half delay model fit against variation between samples, 

within each stage and clade, showing that the model lies at the center of the natural variation. For each 

of the six developmental stages and six clade types, the corresponding set of clades was isolated from the 

wild type ureteric tree data. Clades which had not developed beyond a single tip were discarded (10 of 42 

at stage 7 and 1 of 36 at stage 8). For each such set of clades, the half-delay model tree with the best 

average matching to the set was added (see Fig. 3A for definition of matching score). Then for each real 

or model tree, the average matching score with the other members of its set was calculated, and this 

metric was used to compare the model (red) against the real samples (blue). In 29 of 36 cases the half 

delay model has highest or equal highest average matching score, indicating that the model is closer to 

the sample clades on average than are any of the individual samples to the others; in the remaining 7 

cases the model is surpassed by only small margins. A small amount of random horizontal permutation 

has been added to points in the plot to enable points with equal matching score to be distinguished.  
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Supplementary Figure 2: Weight 16 and 21 subtree frequency in wild type time series dataset. In each 

case the highlighted tree is the centroid of the set (most representative structure, determined by 

maximum mean matching score with the other members of the set), and is also the half-delay tree of the 

given weight. 
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Supplementary Figure 3: Mutant phenotypes compared to tip-number matched wild type controls in 

terms of (A) surface area per tip; (B) balance, averaged over the binary branch points in each tree. 

Compare to Fig. 6F, Fig. 7A. Alternative control groups are to show that mutant differences are not an 

artefact of generally delayed development. Each plot shows estimated median change from wild type 

(dashed line) with 95% confidence interval, using a Wilcoxon rank sum test on the kidney level metrics. 

For A, values were first log transformed, and the estimates presented as proportional change. Control / 

test group sizes are: Tgfb2+/- 12/4; Bmp7-/- 12/9; Spry1-/- 12/3. 

Supplementary Figure 4: Mean balance of kidneys in mutant and control groups. Control / test group 

sizes are: Tgfb2+/- (E14.5) 5/4; Bmp7-/- (E14.5) 12/9; Spry1-/- (E13.5) 12/3. Comparison is to same-age 

wildtype controls. 
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Movie 1: Ureteric trees from mutant Tgfb2+/- (A), Bmp7-/- (B) and Spry1-/- (C) embryos (top row) compared 

with wild type controls (middle row) and alternative wild type comparison kidneys matched by tip number 

(bottom row). 
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