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Organ size control via hydraulically gated oscillations
Teresa Ruiz-Herrero1, Kévin Alessandri2,3, Basile V. Gurchenkov4,5,6,7, Pierre Nassoy2,3 and L. Mahadevan1,8,*

ABSTRACT
Hollow vesicular tissues of various sizes and shapes arise in
biological organs such as ears, guts, hearts, brains and even entire
organisms. Regulating their size and shape is crucial for their
function. Although chemical signaling has been thought to play a role
in the regulation of cellular processes that feed into larger scales, it is
increasingly recognized that mechanical forces are involved in the
modulation of size and shape at larger length scales. Motivated by a
variety of examples of tissue cyst formation and size control that show
simultaneous growth and size oscillations, we create a minimal
theoretical framework for the growth and dynamics of a soft, fluid-
permeable, spherical shell. We show that these shells can relieve
internal pressure by bursting intermittently, shrinking and re-growing,
providing a simple mechanism by which hydraulically gated
oscillations can regulate size. To test our theory, we develop an in
vitro experimental set-up to monitor the growth and oscillations of a
hollow tissue spheroid growing freely or when confined. A simple
generalization of our theory to account for irreversible deformations
allowsus to explain the time scales and the amplitudes of oscillations in
terms of the geometry and mechanical properties of the tissue shells.
Taken together, our theory and experimental observations show how
soft hydraulics can regulate the size of growing tissue shells.
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INTRODUCTION
Biological organs are formed via iterations and variations of just
a few geometric/topological themes: folding, lumenization and
segmentation. The regulation of their size and shape is crucial for
normal physiological function in organisms (Conlon and Raff,
1999; Day and Lawrence, 2000; Serrano and O’Farrell, 1997). In
addition to molecular and cellular chemical patterning, it is
becoming increasingly clear that mechanical forces play an
important role in regulating the size and shape of tissues, organs
and organisms. These forces arise from differential growth or
movement, confinement, and active processes such as contraction,
division and apoptosis. Given the large water content in tissues, it is

also likely that hydraulics plays an important role in creating and
regulating size and shape at multiple levels. Indeed, at the cellular
level, the role of water movements has led to a re-evaluation of
cytoplasmic mechanics (Moeendarbary et al., 2013). At the organ
level, we know that cysts and tubules (O’Brien et al., 2002)
enclosing a central lumen are a common motif in the brain, the gut
tube, the otic vesicle, kidneys, etc. (Desmond and Jacobson, 1977;
Tanner et al., 1995). Fluid pressure is thought to play an important
role in the early growth and shaping of vesicular structures that grow
by inflation, and for an organ to become functional tissue growth
and cyst growth need to be coordinated; failure to achieve this
results in many diseases (Desmond and Jacobson, 1977; Navis and
Bagnat, 2015; Tanner et al., 1995).

As natural occurrences of this, we note that the formation and
hatching of blastocysts in amniote embryos (Biggers et al., 1988;
Watson, 1992), regeneration in primitive Cnidarians such as Hydra
vulgaris (Fütterer et al., 2003), and inner ear morphogenesis and
stability are all dependent on tissue hydraulics (Hoijman et al.,
2015). In each case, lumenization proceeds via inhomogeneous
fluid pumping into an otherwise homogeneous cellular aggregate,
which nucleates a cavity that then grows. In all cases, the inflated
hollow cellular shell undergoes periodic oscillations in size even as
it maintains an average radius stably over hours and even days
(Fig. 1). For example, the blastocyst, formed after cavitation of the
mammalian zygote, consists of a shell composed of two layers, the
zona pellucida and the trophectoderm, that surround an internal cavity
filled with fluid (Biggers et al., 1988; Watson, 1992). The blastocyst
increases its total average volume via a series of slow expansions and
rapid contractions during which fluid is pumped in and out (Cole,
1967; Niimura, 2003), eventually reaching a critical size before it
hatches by creating a small tear in the zona pellucida that grows
and allows the whole blastocyst to escape. The contractions and
expansions are thought to play an active role in thinning out and
softening the outer layer (Cole, 1967; Niimura, 2003). In the context
of the inner ear, studies in the zebrafish suggest that hydrostatic
pressure of the endolymph fluid drives early ear growth, and
subsequent volume homeostasis is needed for proper function
(Hoijman et al., 2015). Finally, at the level of an entire organism,
young specimens of the Cnidarian H. vulgaris consist of a hollow
sphere of cells that undergoes cycles of contractions and expansions
driven by the hydrostatic pressure that builds up and leads to tissue
bursting, causing a sudden increase of permeability (Fütterer et al.,
2003; Kücken et al., 2008), followed by healing before the cycle is
repeated. After several oscillations, spherical symmetry is broken
causing elongation along an axis (Soriano et al., 2006). Inflation-
deflation oscillations are also observed after cavitation in organoids
cultured in vitro [see supplementary movies in Drost et al. (2015),
Farin et al. (2016), Jaffe et al. (2008), Sato et al. (2009)], although
these oscillations have not been explicitly studied in that context.

In each of these systems, which span different organs and
organisms, we see that a spherical hollow tissue grows via fluid
permeation and cellular division, distending until it bursts, before
the cycle is repeated. This suggests that there is likely to be aReceived 5 April 2017; Accepted 24 October 2017
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Strasbourg, 67404 Illkirch-Graffenstaden, France. 8Departments of Physics and
Organismic and Evolutionary Biology, Wyss Institute for BioInspired Engineering
and Kavli Institute for NanoBio Science and Technology, Harvard University,
Cambridge, MA 02138, USA.

*Author for correspondence (lmahadev@g.harvard.edu)

L.M., 0000-0002-5114-0519

4422

© 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 4422-4427 doi:10.1242/dev.153056

D
E
V
E
LO

P
M

E
N
T

mailto:lmahadev@g.harvard.edu
http://orcid.org/0000-0002-5114-0519


common physical scenario to explain this dynamic process. Here,
we provide a mathematical model that shows how hydraulically
gated oscillations can provide a robust and efficient way of
controlling the size of multicellular tissue cysts. To test our
predictions, we introduce an in vitro experimental system for the
study of oscillations in synthetic cysts and show how our general
theory is consistent with our experimental observations.

RESULTS
Theory
To describe the growth and dynamics of a cyst, a multicellular cyst,
we assume it has the shape of a simple spherical shell filled with fluid
at a different pressure relative to the environment, as shown in
Fig. 2A. Cell proliferation changes the volume of the wall occupied
by cells, and any osmotic imbalance or active pumping creates an
inward flux of solvent that increases the radius of the shell while
stressing its wall. When the wall stress is greater than a critical

threshold, thewall ruptures leading to an outward flux that reduces the
wall tension and deflates the shell. This deflation allows the rupture to
heal, and the whole process repeats itself. To understand this
quantitatively, we start with a minimal model that assumes that cell
proliferation and osmotic influx rate (Jo=KPosm) are constant and
independent of the tension, and that the material is purely elastic.
Then, we may write a set of equations for the evolution of the radius
of the shell R(t), the thickness h(t), the hydrostatic pressure P(t) and
thewall stress σ(t) that couples cell proliferation, and fluid permeation
to the generation of tension in the tissue wall, and its intermittent
release, and reads as:

4p
d

dt
ðR2hÞ ¼ Jc (cell volume conservation); ð1Þ

dR

dt
¼ KðPosm � PÞ � Q (lumen volume conservation); ð2Þ

Fig. 1. Oscillations of a spherical multicellular
tissue vesicle. (A) Blastocyst formation in a
developing human embryo, showing the first cell
divisions and the formation of the blastocyst cavity
(figure adapted from Wong et al. 2010).
(B) Swelling-collapse oscillations during H.
vulgaris regeneration (figure adapted from Soriano
et al., 2006). (C) Time evolution of the radius for the
two cases: blastocyst (green) and Hydra (black).
The blastocyst trajectories were obtained from the
analysis of the movies in the supplementary
information of Wong et al. (2010), and the Hydra
trajectory from Soriano et al. (2006). Scale bars:
100 μm (A); 200 μm (B).

Fig. 2. Mathematical model of oscillations in the size of a spherical shell. (A) System schematic depicting the main quantities: cyst radius (R) and thickness
(h), hydrostatic pressure (P), surface tension (σ), constant inward flux due to osmotic pressure (Jo) and outward flux (Q) that releases the pressure when a hole of
size b0 opens. (B) Oscillatory dynamics for the scaled radius, surface tension, thickness and pressure obtained from solving numerically the system of differential
Eqns 6-8 with the following parameter values ĵ ¼ 0:016, e=9.28 · 1013, ŝ2 ¼ 1, ĥ0 ¼ 0:07, b̂0 ¼ 0:036, Dŝ ¼ 0:2, ŝ0 ¼ P̂0 ¼ 0.
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s ¼ PR

2h
(tangential force balance on shell); ð3Þ

ds

dt
¼ E

R

dR

dt
(elastic constitutive equation); ð4Þ

where Jc is the cell proliferation rate, K the areal permeability of the
tissue wall, Posm the osmotic pressure, Q the water efflux rate after
rupture per unit area of the shell, and E the elastic modulus of the
tissue. We further assume that when the wall ruptures, outward flow
through the resulting hole can be modeled via a simple linear
Poiseuille-like relation coupling pressure to flux that reads:

Q ¼ 1

4pR2

r4P

hh
; ð5Þ

where η is the viscosity of the solvent and r is the radius of the hole.
We further assume that the time scale for hole closing is much
shorter than the time scale for tissue growth, i.e. thole�tgrowth, so
that we can approximate the opening of the hole as a sigmoid that
depends on the wall stress. Then the hole has only two possible
states, open and closed, and the transition between them occurs
when the tension reaches the rupture tension, i.e. σ=σ2, leading to a
hole of radius rb that closes when the fluid flow through the
hole causes the tension to decrease to the healing tension, i.e. σ=σ1
(Fig. S3) (see supplementary information where we relax these
assumptions and discuss their effects, Fig. S6). This model bears
some resemblance to the one proposed for H. vulgaris regeneration
(Fütterer et al., 2003; Kücken et al., 2008). However, our model
accounts for tissue growth and tension-controlled rupture and
healing; in the following sections, we will also introduce noise,
multiple layers and different mechanical dependencies.

Analysis
To understand the dependence of the system on the different
parameters, we can rewrite Eqns 1-5 in their dimensionless form
scaling the length by the initial radius R0, time by the time scale
of cyst expansion τgrowth=R0/Jo and tension and pressure by
the elastic modulus E, writing: R̂ ¼ R=R0, ĥ ¼ h=R0, ŝ ¼ s=E,
P̂ ¼ P=E, t̂ ¼ t=tgrowth. Simplifying the dimensionless system of
equations, we can follow the evolution of the scaled radius,
thickness and lumen pressure via the system:

dR̂

d̂t
¼ ð1� P̂=P̂osm � Q̂Þ ; F̂; ð6Þ

dĥ

d̂t
¼ ĵ

1

R̂
2 �

2ĥ

R̂
F̂; ð7Þ

dP̂

d̂t
¼ 1

R̂
2 ð2ĥ� 3P̂R̂ÞF̂þ ĵ

P̂

ĥ

� �
; ð8Þ

where F̂ ¼ F=Jo is the dimensionless net flux, ĵ ¼ Jc
4pR2

0Jo
is the

dimensionless ratio between the proliferation rate and the influx rate,
and Q̂ is a function of the dimensionless variables that reads

Q̂ ¼ e
r̂4P̂

R̂
2
ĥ
Hðs� s2Þ; ð9Þ

with e=ER0/4πηJo. We see that the dimensionless parameters that
specify the dynamics are Jc=JoR

2
0 (the change in volume in the

spherical shell over the change relative to the internal cyst volume),
ER0/ηJo (the ratio between the time scales for cyst expansion and

mechanical deformation) and Δσ/E (the strain amplitude that the
cyst experiences during oscillations).

This system of Eqns 6-9 has no fixed points for non-zero radius R or
thickness h of the cyst; however, the presence of different thresholds
for rupture and healing suggests the possibility of oscillatory dynamics.
To understand this, we first provide a simple analytical approach for
the period and amplitude of the ensuing oscillations. Assuming that
oscillations arise in the limit of a weakly strained shell, i.e. ε≪1, with
the stresses lying between the two limits associated with rupture σ2 and
healing σ1, wewriteDŝ ¼ ðs2 � s1Þ=E, neglecting for simplicity the
contribution of the hydrostatic pressure to the flux, assuming it is small
for soft elastic materials, i.e.P=Posm�1. For a cyst with dimensionless
average radius ðR̂aÞ and amplitude of oscillations ðDR̂Þ, the strain is
approximately DR̂=R̂a and:

Dŝ ¼ DR̂

R̂a

: ð10Þ

Assuming that we start with an initial cyst that is tensionless, the
change in radius from the initial value R0 to the average value Ra
follows:

Ra � R0

R0
�s2=E: ð11Þ

Then Eqns 10 and 11 imply that the average scaled radius and the
scaled amplitude for oscillations are given by:

R̂a�ð1þ ŝ2Þ; ð12Þ
DR̂ ¼ Dŝð1þ ŝ2Þ; ð13Þ

which in dimensional form read Ra �R0ð1þ s2=EÞ and ΔR=
(R0Δσ/E)(1+σ2/E). Similarly, from Eqns 6, 8 and 12, we see that the
average thickness and pressure increase for Ĵc = 0 follow the
relations:

dĥa
d̂t

� Ĵ c

ð1þ ŝ2Þ2
; ð14Þ

dP̂a

d̂t
� 2ŝa

R̂a

dĥa
d̂t

¼ Ĵc
2ŝ2 � Dŝ

ð1þ ŝ2Þ3
; ð15Þ

with Ĵc ¼ Jctgrowth=4pR
3
0. Finally, the period of the oscillations,

τosc, is set by the time needed to increase the cyst volume from the
minimum size Rmin=Ra−ΔR/2 to the maximum size Rmax=Ra+ΔR/2:

t̂osc ¼ tosc
tgrowth

¼ DR̂ ¼ Dŝð1þ ŝ2Þ: ð16Þ

To test the validity of our simple analysis, we solve the ordinary
differential equation (ODE) system Eqns 6-8 numerically for a
range of parameters consistent with experiments that correspond
to ĵ ¼ 0:016, e=9.28 · 1012, ŝ2 ¼ 1, ĥ0 ¼ 0:07, Dŝ ¼ 0:2,
ŝ0 ¼ P̂0 ¼ 0. In Fig. 2B, we show a set of trajectories for the
variations of R, h, σ and P; as expected, the cyst grows from an
initial state and then starts to oscillate asymmetrically because the
time scale for rupture is much faster than that of growth. Consistent
with our scaling predictions (Fig. S4), we see that both the radius
and the tension oscillate with period τosc around a constant value
after an initial increase. We also see that the cyst thickness and
pressure can increase or decrease during the first stage before
oscillations appear, depending on the ratio Jc=JoR

2
0 and the initial

values h0, R0 and P0 (see Eqn 7). If the initial tension and pressure
are different from zero, this will affect the initial growth phase, and
yield a different value for the maximum size, but all our qualitative
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results will remain similar. When the cells in the shell proliferate
Jc≠0; the average values of the pressure and thickness, as well as the
amplitude of their oscillations increase linearly, consistent with our
analytical estimates (Eqns 14, 15).

Experiments
To test these theoretical ideas in an experimental setting, we
developed an artificial set-up using multicellular cysts for which
oscillations and growth can be easily monitored. Cysts were
prepared from MCF10-DCIS.com cells using the Cellular Capsules
Technology as described by Alessandri et al. (2013) for
multicellular spheroids (see schematics in Fig. 3A). Briefly, a
composite fluid jet is generated using a co-extrusion method with
cells in suspension in the core flow and a polysaccharide (alginate)
that undergoes gelation in contact with divalent ions in the sheath
flow. Following encapsulation, we observe that cells which are
confined in the aqueous core of the hollow permeable capsule
divide and occupy an increasing volume of the capsule. Confocal
micrographs of the equatorial plane of the encapsulated
multicellular aggregates show that the spheroids are hollow
(Fig. S1). Confocal live imaging of the cyst surface also reveals a
honeycomb-like structure, which is typical of epithelia (Movie 1).
We further monitored the growth dynamics of individual cysts by

phase contrast microscopy by acquiring time-lapse sequences over
extended periods of times (∼15 days). Fig. 1C andMovies 2-4 show
typical sequences of cyst oscillations. We immediately remark that
cyst average radii increase in time from one cycle to another with
several different scenarios seen: (1) when Rcyst<Rcapsule, the cyst
expands and shrinks freely (Movie 2); (2) when Rcyst>Rcapsule, the
cyst expands against an elastic micro-compartment (Movie 3);
(3) for large deformations of the capsules, the capsule occasionally
bursts out and the cyst may escape (a phenomenon that is strongly
reminiscent of blastocyst hatching in embryos), before resuming
free oscillations (Movie 4). We also observe that the oscillation
amplitude and period are altered once the cyst reaches the wall
of the capsule. More quantitatively, representative temporal
evolutions of cyst radius are shown in Fig. 3B (central panel)
and Fig. S2.

Complementary experiments were performed to measure the
characteristic time for hole closing, τhole. We were able to capture
deflation events by chance (Movie 5). In parallel, we also carried out
punching experiments with a micro-manipulator glass needles of
typical diameter ∼10 μm (Movie 6). In both cases, deflation
dynamics (Fig. S2) show that τhole is ∼1-2 min. As hypothesized in
the rest of the manuscript, τgrowth≫τhole. All together, we see that
whereas the free cyst oscillates in size with increasing average
radius, after confluence the cyst is confined by the capsule and both
of them oscillate jointly with a period longer than that observed
during the free stage.

A qualitative test of our theory requires perturbation experiments to
modulate the dynamics of cyst oscillations. This can be achieved
either bymolecular control of the permeation dynamics or by varying
the external osmolarity. The former is not likely to shed any light on
the general mechanisms as it would target specific membrane
channels and cannot rule out the role of other compensatory
mechanisms. Therefore, we performed the qualitative experiment of
increasing the environmental osmolarity, and see that the elimination
of an osmotic pressure difference completely inhibits cyst
oscillations, consistent with our simple theory.

Adapting the model to experiments
Our simple elastic model for the dynamics of cysts predicts size
oscillations between a maximum and a minimum radius associated
with hole opening and healing (Fig. 2B). However, it fails to explain
the steady increase in the average radius and the effect of
confinement observed in our experiments, most likely because the
assumption of a purely elastic response is less realistic than a
viscous or plastic rheology for the multicellular tissue. Therefore,
we modify our choice of a simple linear elastic-plastic material law
for tissue behavior (see supplementary information for details, and
also for a comparison with the use of a viscous law, see Fig. S7).
A linear elastic-plastic response ensures stress relaxation after
deformations, allowing us to represent implicitly cell rearrangements
driven by cell migration, division and death. Below the yield stress, σy,
the strain-stress relation is assumed to be elastic with a modulus E,
whereas above it we assume that the modulus is H<E, so that after

Fig. 3. Experiments to create and study synthetic multicellular tissue shells. (A) Experimental set-up formed by a microfluidic co-extrusion device. The
spheroids were formed by an outer sheath of a sodium alginate solution and an inner core composed of a cell suspension. (B) Top: Snapshots showing cysts of
MCF-DCIS.com cells inside alginate capsules that undergo cycles of expansion and shrinkage. Scale bar: 100 μm. Bottom: Comparison between experimental
observations (black) and theoretical results (red) for the evolution of the cyst radius. The dashed line shows the initial radius of the alginate capsule. The numerical
results were obtained using the following parameters and initial conditions: Jo=2 μmh−1, Jc=8 μm3 h−1, Ec=20 kPa, Hc=16 kPa, Ea=70 kPa, �s2 ¼ 11 kPa,
�s1 ¼ 4:4 kPa, σy=8.5 kPa, Rc(0)=40 μm, Ra(0)=80 μm, hc(0)=6 μm, ha(0)=20 μm, b0=5 μm, where subscript c stands for cyst and a for alginate capsule.
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the first oscillation ε1=σy/E+(σ2−σy)/H. In the first phase, when the
cyst grows unimpeded, σy≤σ2 and plastic deformations will occur
during every oscillation and the average radius will increase
accordingly (Fig. S5; Fig. 3B). Then after the ith oscillation, the
strain and radius evolves as follows:

e ¼ ei �
s2 � sy

E
þ s� sy

H
; ð17Þ

ei ¼ e1 þ iDe; ð18Þ
Ri ¼ R1ð1þ DeÞi�1; ð19Þ

with R1 being the maximum radius and ε1 the maximum strain
before the first deflation and Δε=(σ2−σy)(1/H−1/E).
In the second phase, cyst growth is slowed down owing to

confinement by the alginate elastic capsule. The presence of a
second stiff layer implies that part of the tangential stress in the
pressurized tissue is taken up by the alginate shell, so that a higher
inner pressure is necessary for continued growth. As observed in
Eqn 6, this increase in the hydrostatic pressure is translated into a
decrease in the net flux and therefore a smaller period of oscillations
(Eqn 16; Fig. 3B). To obtain the evolution of the cyst radius,
thickness, pressure and period of oscillations, we use the ODE
system Eqns 6-8, leaving them in dimensional form for ease of
comparison with experiments, but modifying Eqn 8 to account for
the variation in the total tension to read:

P�R

2htot
¼ sc þ sa; ð20Þ

where subscript c stands for cyst and a for alginate capsule, and
�R ¼ ðRc þ RaÞ=2 htot=hc+ha. Because both layers are in contact,
they undergo the same displacement. Assuming small variations in
the thickness, and further that the thickness is much smaller than the
radius, this implies that dRc/dt=dRa/dt. Using these approximations,
we obtain a variant of the system of differential equations (Eqns 6-8)
to describe the experimental system:

dRc

dt
¼ dRa

dt
¼ KðPosm � PÞ � Q ; F; ð21Þ

dhc
dt

¼ Jc
4pR2

c

� 2
hc
Rc

F;
dha
dt

¼ �2
ha
Ra

F; ð22Þ
dsc

dt
¼ Ec

Rc
F;

dsa

dt
¼ Ea

Ra
F; ð23Þ

with the hydrostatic pressure following:

dP

dt
¼ 2F

�R
htot

Ec

Rc
þ Ea

Ra

� �
� P

2

�

þ P�R

htot

Jc
8pFR2

c

� hc
Rc

� ha
Ra

� ��
: ð24Þ

To solve the system Eqns 21-24 and 17, we used the following
parameter values measured experimentally: tissue elastic modulus
Ec=20 kPa, alginate elastic modulus Ea=70 kPa, osmotic flux
Jo=2 μmh−1, plastic modulus Hc=16 kPa, tissue permeability
K=0.1 μm/kPa · h, cell replication rate Jc=8 μm3 h−1, initial radius
of the cyst Rc(0)=40 μm and its thickness hc(0)=6 μm, radius of the
alginate shell Ra(0)=80 μm and its thickness ha(0)=20 μm. The elastic
moduli were chosen to be within the ranges measured experimentally
(Alessandri et al., 2013; Harris et al., 2012), the osmotic flux, the
plastic coefficient, the rupture tension and the initial state were
estimated from the experimental results, and the cell replication rate
corresponds approximately to the division rate of one cell per day
observed in experiments. Finally, the experiments show that

oscillations are likely to be neither purely deterministic or
stochastic, but a mixture of the two. The cyst dynamics is affected
by noise because rupture is a catastrophic event that depends on
material inhomogeneities. Introducing noise by allowing the rupture
and healing tensions to fluctuate randomly around their average values
following a Gaussian distribution with si [ N ð�si; 0:4Þ, we obtained
trajectories that fit the experimental results (Fig. 3B). This agreement
shows that a simple but natural extension of our general model to
account for plasticity of the tissue, and the elastic confinement by an
alginate shell suffices to explain our experimental observations.

DISCUSSION
Size control requires the use of dynamic measurements to measure and
control shape. As examples at the molecular scale, we point to
microtubule length oscillations in asters, and at the cellular scale, we
point to the ruffling oscillations in cells that are used to measure
confluence. Here, we have presented a simple but general framework
for tissue size control, inspired by the relatively common example of
fluid-driven growth and hydraulically gated oscillations seen in diverse
multicellular hollow tissue vesicles such as organoids, blastocysts,
zebrafish inner ear and even body regeneration in H. vulgaris.

A crucial fact that underlies our study is that there is a large
separation of time scales associated with the relatively fast rupture and
leakage of luminal fluid when the tissue stress reached a critical value,
and the slow growth of the lumen via permeation. This allows for
robust regulation of cyst size via hydraulically gated oscillations. We
present an analytical theory for the case of small strains in an elastic
shell that yields simple expressions for the average size of the vesicle,
and the frequency and amplitude of size oscillations, and complements
a more general framework that accounts explicitly for complex
mechanical properties and different functional forms for transport and
growth. We also performed experiments in a synthetic set-up that
showed the predicted oscillatory behavior, but to explain the gradual
increase in the radius and the period of oscillation, we generalized our
theory to include an elastic-plastic response for the tissue to describe
the large strain behavior observed in our experiments.

The abrupt increase of the permeability of the cyst in our simple
setting was associated with the formation of a simple hole.
However, the pressure relief mechanism can take a variety of
forms: localized channels, homogenous pores throughout the tissue
or valves. Our coarse-grained model does not distinguish between
these different mechanisms as long as the dynamics of opening and
closure are faster than the cyst expansion and cell division rates,
allowing us to model the outflow by an effective fast flux without
focusing on the specifics. Natural extensions of this model include
considerations of inhomogeneous spatial mechanical properties,
active control of pressure relief via stretch-dependent valves,
channels etc. and would allow us to understand how vesicular
organs of a given size might be shaped by fluid pressure.

MATERIALS AND METHODS
Cell culture
We used wild-type MCF10DCIS.com cells (Asterand) and MCF10DCIS.
com cells stably transfected with LifeAct-mCherry. Cells were maintained
in DMEM-F12 (50:50) supplemented with 5% horse serum, 2 mM L-
glutamine, and penicillin/streptomycin in a humidified atmosphere
containing 5% CO2 at 37°C, with medium changed every 2 days. Culture
media were purchased from Invitrogen and antibiotics from Gibco BRL.

Cell encapsulation
We used the Cellular Capsules Technology described by Alessandri et al.
(2013). This method is based on a microfluidic co-extrusion device
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(Fig. 3A). The outer sheath is made of a sodium alginate solution and the
inner core is composed of the cell suspension obtained after trypsinization of
DCIS cells cultured in a Petri dish. Liquid extrusion is performed in the air
with flow rates in the range of 50-100 ml/h, which leads to the formation of a
jet that fragments into droplets (due to Plateau-Rayleigh instability).
Because alginate undergoes gelation in the presence of divalent ions,
composite droplets readily crosslink as shells encapsulating cells upon
contact with a calcium bath. The intermediate capillary is filled with a
calcium-free solution (e.g. sorbitol) that serves as a barrier to diffusion of
calcium released from intracellular stores, and thus avoids blockage of the
chip. Once cellular capsules were formed, they were transferred within 2min
into culture medium and placed inside an incubator (37°C, 5% CO2,∼100%
relative humidity). In each encapsulation run, several tens of capsules were
selected for monitoring cyst morphology and growth using high-resolution
imaging. A key property of the alginate hydrogel is its permeability (pore
size of 10-15 nm), which allows free flow of oxygen and nutrients into the
capsule and permits cell proliferation. In this jetting regime, the radius of the
capsules is determined by the size of the injector nozzle, and the aspect ratio
h/R (shell thickness/shell radius) is set by the ratio between outer and inner
flow rates. In most experiments performed and analyzed in the present work,
capsule radii were ∼100 µm and shell thicknesses were ∼20 µm. These
morphological parameters were measured precisely by phase contrast
microscopy for each individual capsule that was monitored for this work. As
reported by Alessandri et al. (2013), the Young’s modulus of alginate gels
preformed in a 100 mM calcium bath and kept in culture medium for several
days is E∼70 kPa.

Immunofluorescence, live imaging and image analysis
To characterize the structure of the growing cellular aggregates, the
encapsulated cell cultures were incubated with 0.5 µg/ml fluorescent
phalloidin (Molecular Probes) in PBS with 1% vol/vol Triton X-100
(Sigma) at 4°C from 2 h to overnight. Actin staining was complemented
with labeling of apoptosis using fluorescent antibodies against Caspase 3
(Merck, AB3623) at 1 µg/ml. By confocal microscopy (LSM710; Carl
Zeiss), we checked that the growing multicellular aggregates were hollow
spheroids, i.e. cysts (Fig. S1). To monitor the growth dynamics of cysts, we
mostly used phase contrast microscopy. Time-lapse sequences over
extended periods of times (∼ 15 d) were acquired using an inverted
microscope (Nikon Eclipse Ti, 10×/0.3 N.A. dry objective; Nikon
Instruments) equipped with a motorized stage (Märzhäuser) and climate
control system (The Brick; Life Imaging Systems). The microscope and
camera (CoolSNAP HQ2; Photometrics) were driven by Metamorph
software (Molecular Devices). Cyst radius measurements were obtained
using ImageJ (National Institutes of Health). Live confocal imaging over
shorter periods of timewas also performed using an inverted (LSM710; Carl
Zeiss) microscope. In this case, cysts were prepared with the MCF10DCIS.
com LifeAct-mCherry stable line. Fluorescence was acquired using a 561-
nm (15-mW) diode-pumped solid-state laser and a 25×/0.80 N.A. oil
immersion objective.
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I. SUPPLEMENTARY THEORY

A. Viscoelastic case

The assumption that the tissue shell is a linearly elastic material is simple and convenient, but false. A
more general constitutive law for a multi-cellular tissue cell would have to account for both its viscous and
plastic behavior when deformation is followed by self-adaptation via cell rearrangement [2, 3]. In the main
text we presented a elastic-plastic regime as a minimum model to reproduce the nonlinearities observed in
the experiment, however, in the general case we should expect a visco-elastic or even visco-plastic regime.

Here, we briefly discuss the role of viscoelastic deformations by using

σ̇ +
σ

τ
=
E

R

dR

dt
(S1)

instead of the purely elastic or elastic-plastic model used in the main text. Here τ = ηcyst/E, being E the
elastic modulus, and ηcyst the viscosity of the shell. Then, the system of differential equations (6-8) in the
main text are replaced by:

dR̂

dt̂
= (1 − P̂ /P̂osm −Q/Jo) ≡ Φ̂ (S2)

dĥ

dt̂
=

Jc
4πR2

0Jo

1

R̂2
− 2ĥ

R̂
Φ̂ (S3)

dP̂

dt̂
=

1

R̂2

(
(2ĥ− 3P̂ R̂)Φ̂ +

Jc
4πR2

0Jo

P̂

ĥ

)
− P̂R0

τJo
(S4)

In the viscoelastic case, there is one extra dimensionless parameter accounting for the ratio between the
timescales for cyst expansion and viscoelastic deformation R0E/ηcystJo. The additional parameter allows for
the explanation of the average radius increase observed in the experiments with synthetic cysts. However,
the values of the viscoelastic coefficient needed to reproduce the experimental behavior are too high to
correspond to biological tissue, which has a viscosity around 102kPa · s [4] (Fig. S7)
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B. Pore dynamics

The pore opening and closing can be represented in terms of a simple dynamical system :

dr

dt
= a1r + a2r

3 − a3r
5 (S5)

a1 =
σ − σ2

4(σ2 − σ1)

1

τpore
(S6)

a2 =
1

τporeb20
(S7)

a3 =
1

τporeb40
(S8)

the normal form for a subcritical pitchfork bifurcation where the maximum pore size is b0 and the charac-
teristic time for healing is τpore. When the dynamics of the pore are much faster than the capsule dynamics,
τpore << τgrowth, the dynamics can be approximated by a step function, in that case the pore has only two
possible states and the transition between them occurs instantaneously, r = b0 after it opens at σ = σ2, and
r = 0 after closing at σ = σ1 (Fig.S3). If τpore ∼ τgrowth, the pore does not heal instantaneously, and the
amplitude of the oscillations varies as a function of τpore. We found that slow pore dynamics increases the
amplitude and the period of oscillations while keeping the maximum radius constant (Fig.S6). This happens
because although bursting occurs at the same radius for all rates of pore closing, when healing times are
slower, the pore closes at smaller values of the tension, which allows more fluid to enter the cyst.

It should be pointed out that our minimal mathematical model for hole opening above a critical tissue
tension has some similarities with pore opening and closing in lipid vesicles and membranes [5, 6]. However,
the length and time-scales are orders of magnitude apart, and the rheology and regulatory mechanisms are
very different.

Development 144: doi:10.1242/dev.153056: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Development 144: doi:10.1242/dev.153056: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

II. MOVIES

Movie 1. Confocal live imaging of an encapsulated cyst grown from cells stably transfected with
LifeAct-GFP. Maximum intensity projections of the confocal stacks [a hot look-up table acquired
using Fiji is shown (cyan)]. Total duration=19h

Movie 2. Growth of an MCF10DCIS.com cyst inside an alginate gel capsule. Time-lapse, phase-
contrast imaging shows the oscillations of the cyst before reaching the walls of the capsule. Images
were recorded every 5 min. Scale bar: 100µm.

http://movie.biologists.com/video/10.1242/dev.153056/video-1
http://movie.biologists.com/video/10.1242/dev.153056/video-2
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Movie 3. Growth of an MCF10DCIS.com cyst inside an alginate gel capsule. Time-lapse, phase-
contrast imaging shows the oscillations of the cyst in contact with the capsule inner wall. Images were 
recorded every 5 min. Scale bar: 100µm.

Movie 4. Growth of an MCF10DCIS.com cyst inside an alginate gel capsule. Time-lapse, phase-
contrast imaging shows the oscillations of the cyst in contact with the capsule inner wall, bursting of
the capsule, escape of the cyst, which then undergoes inflation-deflation cycles outside the capsule.
Images were recorded every 5 min. Scale bar: 100µm.

http://movie.biologists.com/video/10.1242/dev.153056/video-3
http://movie.biologists.com/video/10.1242/dev.153056/video-4


Development 144: doi:10.1242/dev.153056: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

Movie 5. Phase contrast sequence showing the collapse of a cyst. Images were recorded every 5 s.
Scale bar: 100µm.

Movie 6. Phase contrast sequence of a punching experiment. An encapsulated cyst is maintained
using micropipette aspiration and punched with a glass needle Images were recorded every 1 s. Scale
bar: 100µm.

http://movie.biologists.com/video/10.1242/dev.153056/video-5
http://movie.biologists.com/video/10.1242/dev.153056/video-6


Figure S1. Confocal image of the equatorial plane of a cyst stained with for actin (red) and apoptosis (green). Scale
bar: 50µm.

Figure S2. Representative trajectories of cyst radius for cysts with different sizes. Radius is normalized by the inner
radius of the capsule.
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Figure S3. Subcritical pitchfork bifurcation approximated as a step function assuming that pore dynamics is much
faster than growth with threshold tension for rupture (σ2) and healing (σ1) and pore size b0.
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Figure S4. Comparison between theoretical estimates (line) and numerical results (cross) in the limit of small strains.
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Figure S5. Schematic of the strain-stress relation for consecutive cycles for a linear elastic-plastic material with a
threshold tension for rupture (σ2) and healing (σ1) and yield tension σy.
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Figure S6. System dynamics for different pore closing times τ̂pore = τpore/τgrowth. From top to bottom: τ̂pore =

5.7 · 10−7, τ̂pore = 7.1 · 10−6, τ̂pore = 2.9 · 10−5. The rest of the dimensionless parameters are ĵ = 0.008, e = 4.6 · 1011,

σ̂2 = 1, ĥ0 = 0.07, b̂0 = 0.036, ∆σ̂ = 0.2, σ̂0 = P̂0 = 0.
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