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Living with a leaky skin: upregulation of ion transport proteins

during sloughing
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ABSTRACT

Amphibian skin is a multifunctional organ providing protection from
the external environment and facilitating the physiological exchange
of gases, water and salts with the environment. In order to maintain
these functions, the outer layer of skin is regularly replaced in a
process called sloughing. During sloughing, the outermost layer of
the skin is removed in its entirety, which has the potential to interfere
with skin permeability and ion transport, disrupting homeostasis. In
this study, we measured, in vivo, the effects of sloughing on the
cutaneous efflux of ions in toads Rhinella marina kept in freshwater
conditions. We also measured transepithelial potential, cutaneous
resistance, active ion transport and the distribution, abundance and
gene expression of the key ion transport proteins sodium—potassium
ATPase (NKA) and epithelial sodium channel (ENaC) during
sloughing. We hypothesised that the increase in transepithelial
efflux of ions during sloughing is a consequence of increased
permeability and/or a reduction in the abundance or expression of
cutaneous ion transport proteins, resulting in disruption of internal ion
homeostasis. There was a significant increase in sodium and chloride
efflux during sloughing in R. marina. However, although in vitro skin
resistance decreased after sloughing, active sodium transport
increased commensurate with an increase in NKA and ENaC
protein abundance in the skin. These changes in skin function
associated with sloughing did not affect the maintenance of internal
electrolyte homeostasis. These results suggest that during sloughing,
amphibians actively maintain internal homeostasis by increasing
cutaneous rates of ion uptake.

KEY WORDS: Amphibian, Homeostasis, Moulting, gPCR, Sodium
transport, Western blotting

INTRODUCTION

The skin, the largest vertebrate organ, has evolved into a complex,
pluri-stratified, multi-membrane system (Lillywhite and Maderson,
1988) with vital, often contrasting, functions (reviewed in Chuong
et al., 2002). It must act as an impermeable barrier to protect the
organism from environmental stressors (abiotic and biotic) (Proksch
et al., 2008) while simultaneously being able to sense, interact and
exchange some solutes with the surrounding environment (Hillyard
et al., 2007). For amphibians, this is especially important as their
skin regulates the exchange of electrolytes, water and respiratory
gases with the environment to maintain internal homeostasis
(Boutilier et al., 1992; Shoemaker et al., 1992).
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Histologically, the skin of amphibians consists of an outer
multilayered epidermis and an inner dermal layer (dermis). The
most basal layer of the epidermis is the stratum germinativum,
which is attached to the dermis by a basement membrane. The
columnar cells of the s. germinativum continually regenerate (via
mitotic division), to replenish and maintain the rest of the
epidermal cell population (Heatwole et al., 1994). Above the
s. germinativum is the s. spinosum (‘spiny layer’), where cellular
keratinisation begins. Above the s. spinosum is the s. granulosum
(granular layer) where the keratinocytes become known as
granular cells. These cells are connected by tight junctions
(zonulae occludens) that separate the apical plasma membrane
from the basolateral membrane lining the lateral intercellular space
(Farquhar and Palade, 1964). The apical plasma membrane of
granular cells therefore forms the limiting barrier for transcellular
solute and water transport across the epidermis, with connections
between this layer and the underlying layers (s. spinosum and
s. germanitivum) forming an electrical syncytium. The most
superficial layer of the epidermis is the s. corneum, which consists
of 1-2 thin layers of dead cells (reviewed in Heatwole et al.,
1994).

Because of constant interactions with the external environment,
the skin must be renewed in order to maintain functionality (Ling,
1972). All metamorphosed amphibians go through a physiological
and behavioural phase known as ‘ecdysis’ or ‘sloughing’ (Ling,
1972; Larsen, 1976), where the old s. corneum is removed and
replaced periodically with a new layer (derived from the
underlying s. granulosum). In the early shedding stage, the old
s. corneum becomes separated from the underlying cell layer via a
gradual dissolution of the desmosomes between these two layers
(Budtz, 1977). The new s. corneum (derived from the underlying
s. granulosum) swells, flattens (Emst, 1973) and becomes
cornified (Elias and Shapiro, 1957; Whitear, 1975). Mucus also
appears beneath the separated s. corneum (known as a ‘slough’) to
facilitate removal (Larsen, 1976). During the post-shedding phase,
the new s. corneum flattens and becomes denser in appearance
(Budtz and Larsen, 1973). Fusion of the s. granulosum layer leads
to the formation of tight junctions (Budtz and Larsen, 1975),
which serve to limit the paracellular movement of salts and water
(Tsukita et al., 2001; Niessen, 2007). While sloughing maintains
the integrity of the skin, physiological changes have been
observed to coincide with sloughing that may disturb
homeostatic balance. Jorgensen (1949) first observed an increase
in cutaneous permeability in sloughing Bufo bufo, Rana
temporaria and Rana esculenta which increased the rate of both
water gain and sodium loss. These changes in skin permeability
can start 12 h ahead of sloughing (Ewer, 1951), and continue
3—4 h post-sloughing (Jergensen, 1949).

The temporary disruption of cutaneous integrity that occurs
during sloughing corresponds with changes to the skin’s
electrophysiological properties. During sloughing there is a
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decrease in the short-circuit current (indicative of active ion
transport activity), transepithelial potential (indicative of the
electrical potential difference between the two sides of the cell
membrane) and skin resistance (Larsen, 1970, 1971a; Nielsen
and Tomilson, 1970). These changes seem to result from the
physical shedding of the slough, as they are initiated by the
separation of the slough from the underlying skin layer
(reviewed in Erlij and Ussing, 1978). However, these studies
artificially induced sloughing through the administration of
hormones such as aldosterone (Nielsen, 1969; Larsen, 1971a),
which can potentially create unrealistic electrophysiological data
(relative to natural or spontaneous sloughing), because
aldosterone also acts to regulate ion and water reabsorption in
the kidneys (Garty, 1986; Eaton et al., 2001) and skin (Bentley,
2002), and increases protein synthesis in the bladder and skin
(Crabbé and de Weer, 1964). Thus, many of these earlier
sloughing studies are difficult to interpret, as the observed
electrophysiological changes of the skin may be an artefact of
aldosterone administration instead of the natural physiological
changes that occur during sloughing.

While earlier studies have suggested that the physical alterations
that occur to amphibian skin during sloughing (e.g. removal of tight
junctions) cause the increase skin permeability (Smith, 1975;
Larsen, 1976), Katz (1978) suggested disruption of tight junctions
was not solely responsible for the observed changes in specific
permeability of the skin to Na' and K" during sloughing. A
reduction in the abundance or activity of transepithelial ion transport
proteins such as epithelial sodium channels (ENaC) or the sodium—
potassium pump (Na'/K'-ATPase; NKA) during sloughing may
also cause disruption to the transportation of ions. ENaC is a
membrane-bound protein channel found in the apical membrane of
epithelial cells that is responsible for the uptake of Na* from the
environment, while NKA is an active membrane protein pump
found in the basolateral layer of epithelial cells that establishes an
electrochemical gradient for ion channels like ENaC to transport
Na" against their concentration gradients (Hillyard et al., 2008).
Thus, examining the relative expression of these proteins in
sloughing amphibians relative to non-sloughing amphibians may
clarify the mechanism through which this disruption of ion transport
during sloughing occurs.

To date, there is no direct link with the activities of the epithelial
transport proteins and the changes in ion and osmotic transport
during sloughing. As there are physical and physiological changes
in the skin associated with sloughing (Larsen, 1976; Erlij and
Ussing, 1978), does the change in skin function cause temporary
electrolyte disruption in the animal’s homeostasis (e.g. blood
biochemistry), or does the skin actively upregulate expression of
epithelial ion transporters (e.g. ENaC and NKA) to maintain
homeostasis? Taking an integrative approach, this study aimed to
investigate the effects of sloughing on epidermal ion transport
in vivo and in vitro, the distribution, abundance and expression of
associated regulatory transport proteins, and blood plasma
biochemistry in cane toads, Rhinella marina (Linnaeus 1758).
This study also avoided the influence of hormone-induced
sloughing by investigating epithelial transport in spontaneously
sloughing anurans.

We hypothesised that as a result of physical changes to the skin
during spontaneous sloughing there would be disruption of
cutaneous ion and water transport (Jorgensen, 1949), with a
reduction in the abundance and expression of ion transport proteins
(e.g. ENaC and NKA), resulting in a transient disruption to internal
ion and water homeostasis.

MATERIALS AND METHODS

Animal maintenance

Rhinella marina (n=24) were collected from The University of
Queensland campus, Brisbane, Australia, between November 2014
and January 2015, and housed in large black bins (n=5 per bin)
containing a thin layer of pine-bark mulch (Richgro, WA,
Australia). Toads were checked daily, fed weekly on vitamin-
dusted (Aristopet Pty Ltd, QLD, Australia) crickets (Acheta
domesticus), and enclosures were cleaned weekly. After
approximately 2 weeks, toads were housed individually in
ventilated polypropylene plastic containers (130x140%325 mm)
with a thin layer of pine-bark mulch saturated with tap water, which
were tilted to allow a wet and dry gradient for the toads to move
between. All toads were kept at 25+0.3°C on a 12 h:12 h light:dark
cycle. All procedures in this study were carried out with the approval
of The University of Queensland’s Animal Ethics Unit (approval
no. SBS/316/14/URG).

Monitoring sloughing frequency

To determine sloughing events, R. marina (n=24) were marked with
a small amount of non-toxic waterproof zinc cream (Key-Sun
Laboratories, NSW, Australia) on the dorsal surface following
Meyer et al. (2012). Animals were checked twice daily to record the
disappearance of the marks as an indication of sloughing. Once a
mark disappeared, it was reapplied. The time (in days) between
mark application and loss was recorded as the intermoult interval
(IMI). The sloughing behaviour for R. marina was divided into four
stages: (1) intermoult, the period in between each slough; (2) pre-
sloughing, when animals started to extend their limbs to lift the
abdomen off the ground; (3) sloughing, which begins with mouth
gaping, followed by abdominal contractions, upper body wiping
and removal of the old skin; and (4) post-sloughing, up to 1 h after
sloughing when normal behaviour resumes.

Electrolyte conductivity
To measure changes in in vivo ion efflux during sloughing, each
animal was placed in an open-ended ventilated clear chamber
(75%110x160 mm) containing 300 ml of reverse osmosis water
with a magnetic stirrer to circulate the solution. The rate of ion efflux
was measured as the change in conductivity (in uS h~') for toads
in each of the following moult stages: (1) intermoult, (2) pre-
sloughing, (3) sloughing and (4) post-sloughing (Fig. 1) for 9
animals. A conductivity electrode connected to a conductivity pod
(ML307, ADInstruments, NSW, Australia) was placed at each end
of the chamber. The output was digitised with a PowerLab 4/35
interface (ADInstruments) and recorded on Labchart software
(ADInstruments). The baseline of the bathing solution was
measured (average from the two electrodes) for roughly an hour
before the animal was placed into the chamber (Fig. 1). A change in
the conductivity of the bathing solution associated with sloughing
was determined via video surveillance, and duration of the
sloughing event (min) was recorded. The experiment was
conducted at room temperature (22+0.5°C). Animals were fed
weekly, but because of the difficulty in determining when animals
would slough (7 day variation), animals were not fasted prior to
measurements and may have been in different digestive states. Both
fasted and recently fed animals were included in the analysis as there
was no significant difference in the rate of conductivity (z50=—0.76,
P=0.45) between fasted and recently fed animals.

The net loss of Na™ and K' into the bathing solution was
measured using flame photometry (BWB-XP flame photometer,
BWB Technologies Ltd, UK). The net loss of C1~ was determined
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Fig. 1. Example raw trace of changes in
conductivity readings associated with
sloughing for one cane toad, Rhinella
marina. Body mass (M,)=46.7 g, snout—
vent length (SVL)=86 mm. ‘Baseline’
values were obtained from the chamber
water in the absence of animals; ‘“+Toad’
data were obtained with the animal inside
the experimental chamber.
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spectrophotometrically (DTX 880 Multimode Detector, Beckman
Coulter, IA, USA) using a commercially available chloride kit
according to the manufacturer’s instructions (MAKO023, Sigma-
Aldrich, MO, USA). The conductivity readings (uSh~') were
converted to NaCl efflux (mmol 17!) using known concentrations
of NaCl solutions (0—1 mmol 17!). The conductivity readings of
the solution and known NaCl concentrations showed a predictable
linear relationship (#?=0.99; Fig. S1). To estimate the overall effect
of sloughing on the total sodium content of the extracellular fluid
(ECF), conductivity measures were converted to a rate of sodium
loss (mmol h™") based on [Na'] of bath water samples collected
after sloughing and assuming that sodium was the primary ion
contributing to solution conductivity and that there was an equal
proportion of sodium lost relative to other ions. The net amount of
Na® lost during sloughing was calculated assuming an ECF
volume of approximately ~25% of the body mass of the animal
(Thorson, 1964). The actual Na* concentration of the ECF was
measured from plasma samples (see below). The proportion of the
total ECF Na' (as a percentage of ECF Na'h™') lost during
sloughing was calculated by dividing the rate of ion loss
(mmol 17! h™!) by the total amount of ECF Na" (mmol)
multiplied by 100.

Before and after each conductivity trial, animals were voided of
urine by gently applying pressure on the ventral side. Body mass
(My; g) was then measured (Adam Equipment Co. Ltd, CT, USA) to
calculate any change over the sloughing period as percentage
change in M, per hour. The change in M, over the tested interval
represents osmotic water flux. Animals that urinated or defected
during the experiment were taken out and re-weighed before being
returned to the chamber, with fresh bathing solution.

Blood plasma biochemistry

Toads (n=14 intermoult, n=10 post-sloughing) were killed via
double pithing at one of two time points: (1) post-sloughing (no more
than 1 h after sloughing had occurred), or (2) intermoult (at a point
halfway through the IMI). Snout—vent length (SVL) and M, were
measured immediately. Blood was collected via cardiac puncture
into a lithium heparinised syringe. Samples were then centrifuged at
5000 g for 5 min and the plasma collected and stored at —20°C for
subsequent electrolyte analysis. Two heparinised capillary tubes of
whole blood were also centrifuged at 5000 g for 3 min to determine
haematocrit (Hct). Plasma Na® and K' levels (mmoll~") were
measured using flame photometry, and plasma osmolality (mosmol

1=1) was measured using a Vapro 5520 vapour pressure osmometer
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(Wescor, Logan, UT, USA). Plasma Cl~ levels (mmol1~") were
determined spectrophotometrically (DTX 880 Multimode Detector,
Beckman Coulter, IA, USA) using a chloride kit according to the
manufacturer’s instructions (MAKO023, Sigma-Aldrich).

Electrophysiology of the ventral skin

Ventral skin samples (<1 cm?, intermoult n=8, post-sloughing #=8)
were collected from the lower abdominal pelvic patch region of
animals used for blood biochemistry analyses (see above), and
mounted in a self-contained, single-channel Ussing chamber
apparatus (model U-9926, Warner Instruments, Hamden, CT,
USA) with a single-channel epithelial voltage-clamp amplifier
(model EC-800, Warner Instruments). Apical and basolateral
surfaces of the skin were perfused with an oxygenated (95% O,
and 5% CO,) frog Ringer solution (mmol 1=!: NaCl 112, KCI 2.5,
p-glucose 10, Na,HPO, 2, CaCl, 1, MgCl, 1, Hepes salt 5, Hepes 5,
at pH 7.4 with an osmolality of 230+20 mosmol I=!; Voyles
et al., 2009), and temperature was maintained via a water bath set
at 25£1°C. Electrophysiological parameters were measured as
follows: (1) transepithelial potential (V) under open-circuit
conditions by clamping the current to 0 pA and recording the
resulting voltage (mV) with reference to the basolateral side, (2)
active ion transport via clamping the voltage to 0 mV and recording
the instantaneous short-circuit current (/) response (LA cm?) and
(3) transepithelial resistance per unit area (Q cm~2) by applying 3 s
of 1 pA pulses across the epithelium every 60 s, or under voltage-
clamp conditions by applying 3 s of 1 mV at 60 s intervals (Ruhr
etal., 2014). The inflections from the resulting change in /. and V't
during pulsing were used to calculate resistance using Ohm’s law.
Sodium flux was calculated by dividing the I, by Faraday’s
constant using the following formula:

I
JNazﬁ

=3 (1)
where Jy, is the sodium flux (mol s7!), /. is the short-circuit
current (uA) and F is Faraday’s constant (96,485 C mol~!). The
relationship between flux and current is the same as that between
concentration and charge (Ussing and Zerahn, 1951). Thus, a
current measured in pA corresponds to a net transport rate of
10~ mol s~1.

The transepithelial potential and resistance were also measured
under more ecologically realistic conditions consistent with
‘freshwater’ on the apical skin side (26 mmol 1= NaCl in distilled
water), where the electrochemical gradient across the skin would
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favour a net efflux of ions during sloughing. The traditional
approach of using Ringer solution on both surfaces of the membrane
could potentially negate this condition.

Histological analysis of epithelial transport proteins
Epidermal thickness was compared between intermoult and post-
sloughing toads. Ventral skin samples (<1 cm?) from the lower
abdominal pelvic patch region were collected and placed into
aqueous buffered zinc formalin fixative (Z-fix, Anatech, MI, USA)
for 24 h, then transferred to 70% ethanol and stored at 4°C. Tissue
samples (intermoult #=6, post-sloughing n=6) were then dehydrated
through an ascending ethanol series, cleared in xylene and
embedded in paraffin wax (Histoplast Paraffin, ThermoFisher
Scientific, Sydney, Australia). Tissue samples were then
transversely sectioned into approximately 6 um-thick sections
(Leica RM2245, Leica Microsystems, NSW, Australia), stained
with Mayer’s haematoxylin and 1% eosin in 70% ethanol, and
photographed with NIS-Elements software (v. 4.10, Nikon
Instruments Inc., Tokyo, Japan) under bright-field illumination
(Nikon Eclipse E200 MV, Nikon Instruments Inc.).

NKA distribution

Distribution of the NKA o-subunit in the ventral skin tissues was
examined via immuno-fluorescence staining. Distribution of the
ENaC o-subunit in skin sections was not examined as the antibody
(Anti-SCNN1A antibody, HPA012939, Sigma-Aldrich) did not
function well in our immunohistochemistry protocol. Sections were
de-paraffinised then washed in washing buffer (0.01 mol 1= PBS,
0.05% Tween-20, pH 7.4; 2x3 min washes) and blocked at room
temperature in normal goat serum (2% goat serum, 1% BSA, 0.1%
cold fish skin gelatine, 0.1% Triton X-100, 0.05% Tween-20 and
0.05% thiomerosal in 0.01 mol I"' PBS, pH 7.4). Sections were then
incubated in a humidified chamber overnight at 4°C with the NKA
primary antibody oS5 (developed by the Developmental Studies
Hybridoma Bank, created by the NICHD of the NIH, and
maintained at The University of Towa, Department of Biology),
diluted 1:500 in 1% BSA, 0.1% cold fish skin gelatine and 0.05%
thiomerosal in 0.01 mol 1=! PBS. Subsequently, sections were
incubated with a fluorophore-conjugated secondary antibody (goat
anti-mouse IgG Dylight, ab96879, Abcam Inc., Cambridge, UK)
diluted 1:500 in 0.01 mol 1I=! PBS and 0.05% Tween-20 for 1 h in
the dark at room temperature. They were then mounted with
Fluoroshield DAPI mounting medium (Sigma-Aldrich), and viewed
using a Nikon Eclipse E200 MV series epi fluorescence microscope
and photographed using NIS-Elements software.

lon transporter abundance
Semi-quantitative Western blotting was performed to estimate the
relative abundance of NKA o-subunit and ENaC o-subunit in the
ventral skin tissues of intermoult (n=4) and post-sloughing (n=4)
toads. Ventral skin samples (<1 cm?) from the lower abdominal
pelvic patch region were collected and stored at —80°C. Frozen
tissues were then homogenised in ice-cold membrane extraction
homogenisation buffer [250 mmol 1=! sucrose, 30 mmol I~ Tris,
1 mmol I7! EDTA, 100 ug ml~' phenylmethylsulfonyl fluoride
(PMSF) and 5 mg ml~! protease inhibitor cocktail], and centrifuged
at 1200 g for 15 min at 4°C. The supernatant was then removed and
centrifuged at 23,000 g for 25 min at 4°C. The resulting pellet was
re-suspended in 50 pl of homogenisation buffer. An aliquot was
used for Bradford protein quantification (Sigma-Aldrich).

A 5 png sample of total membrane protein in NuPAGE LDS sample
buffer (Invitrogen) was loaded in triplicate into Bolt 4—12% Bis-Tris

Plus gels (ThermoFisher Scientific) and electrophoresed at 140 V for
1 h. Gels were subsequently transferred onto 0.45 pm Westran PVDF
blotting membranes (Sigma-Aldrich) at 20 V for 75 min. Membranes
were then blocked in blocking buffer [5% skim milk in TBST
(20 mmol 1! Tris, 150 mmol 1=! NaCl and 1% Tween-20, pH 7.6)]
for 1 h at room temperature before incubation overnight at 4°C with
their respective primary antibody [0.2 pg ml~' NKA primary antibody
o5 and 0.15ug ml~! ENaC a-subunit primary antibody (Anti-
SCNNIA antibody, HPA012939, Sigma-Aldrich)] diluted in
blocking buffer. Membranes were then incubated in secondary goat
anti-mouse IgG horseradish peroxide (HRP)-conjugated antibody
(1.2 pg ml~'; C22P20, Antibodies Australia, VIC, Australia) and goat
anti-rabbit IgG HRP-conjugated antibody (0.6 pgml~'; C24P03,
Antibodies Australia), respectively, for 1 h at room temperature, and
stained with 1-Step Ultra TMB-Blotting solution (ThermoFisher
Scientific). The membranes were dried and digitised for densitometry
analysis with Image J (https:/imagej.nih.gov/ij/). The pixel densities
were used to estimate protein abundance in the post-sloughing
animals, expressed relative to the intermoult group.

lon transporter expression

RNA extraction and cDNA synthesis

Ventral skin samples (<1 cm?) from the lower abdominal pelvic patch
region were collected and stored in RNA-later (Ambion Inc., TX,
USA) at —20°C. The skin samples were homogenised with stainless
steel beads using a TissueLyser II (Qiagen). Total RNA was isolated
using an RNeasy Mini kit with on-column DNAse treatment as per the
manufacturer’s guidelines (RNeasy Mini kit, Qiagen, Hilden,
Germany). RNA purity was assayed by spectrometry, and yield
measured using a Qubit fluorometer (ThermoFisher Scientific). RNA
was then reverse transcribed into cDNA (SensiFAST™ cDNA
synthesis kit, Bioline, NSW, Australia), with appropriate controls (no
reverse transcriptase), followed by RNase H treatment.

Primer design and quantification of mRNA by quantitative PCR
Quantitative PCR (qPCR) primers against the target gene ENaC
(scnnla, sodium channel epithelial 1 alpha subunit) and the
housekeeping gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) were manufactured using previously published species-
specific primer sequences (Konno et al., 2007). Species-specific
primers against the target gene NKA (atplal, ATPase Na'/K"
transporting subunit alpha 1) were designed from published R.
marina NKA-al subunit sequence (GenBank: Z11798.2; Jaisser
et al., 1992) using OligoPerfect™ Designer (ThermoFisher) with
acceptance of the default parameters. qPCR was performed using
the SensiFAST™ SYBR No-ROX kit (Bioline, NSW, Australia) in
a thermal cycler (MiniOpticon™, Bio-Rad) using the cycling
parameters recommended in the qPCR kit. Each assay (in triplicate)
included a no-template control and a no-reverse transcriptase
control. All PCR efficiencies were >90% and all the assays
produced unique dissociation curves. Bio-Rad CXF Manager
software (version 3.1, Bio-Rad) results were exported as tab-
delimited text files and imported into Microsoft Excel for further
analysis. The expression of each gene was quantified relative to the
expression of GAPDH using the Pfaffl (2001) method.

Statistical analysis

All analyses were performed in R.3.0.1 (https:/CRAN.R-project.
org/package=nlme). Data were presented either as means+s.e.m. or
as individual data points depending on the nature of the data
(Cumming et al., 2007; Krzywinski and Altman, 2013), and o was
set at 0.05 for all statistical tests.
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Electrolyte conductivity

Differences in the rate of conductivity between each group were
analysed using linear mixed effects (Ime) models in the R ‘nlme’
package (https:/CRAN.R-project.org/package=nlme) with groups
(intermoult, pre-sloughing, sloughing, post-sloughing) as fixed
effects, M, (g) as covariate, and individual identity as a random
effect to account for repeated measurements within individuals.
Changes in My, (M, before — M,, after) following the in vivo ion loss
experiment between intermoult and sloughing groups were analysed
using linear mixed effects (Ime) models with group (intermoult,
post-sloughing) as fixed variable, duration in the experiment as
covariate, and individual identity as a random effect to account for
repeated measurements within individuals.

Blood plasma biochemistry and electrophysiology of the skin
Differences between the intermoult and post-sloughing group in
plasma biochemistry (Hct, Na*, K*, CI~ and osmolality), and the
electrophysiological properties of the skin (transepithelial potential,
resistance and active transport) were analysed by analysis of
covariance (ANCOVA) with time (h) of post-mortem blood and
skin tissue collection as covariates.

ENaC and NKA abundance and gene expression

Differences in staining intensity of antibody bands representing
NKA oa-subunit and ENaC o-subunit relative abundance and
relative expression of NKA and ENaC between intermoult and post-
sloughing groups were compared using ANCOVA with group
(intermoult and post-sloughing) as fixed effect and time (h) of post-
mortem skin tissue sample collection as covariate.

RESULTS

Moulting behaviour

The IMI of Rhinella marina held at 25°C was variable within and
between individuals and ranged from 5 to 16 days with a mean of
10.5+1.8 days (n=24). There was no diurnal effect on sloughing,
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with 53% of toads sloughing at night and 47% during the day. The
IMI tended to be longer in larger toads (¢;9=—2, P=0.051, n=24).

lon efflux and water influx during sloughing

The average rate of change in conductivity in the bathing water,
representing ion efflux rate from toads, increased 160 times (#45=27.7,
P<0.0001; Fig. 2A) from 0.5+0.1 uS h~! in intermoult animals to 90+
6.9 uS h~! during sloughing. An increase in conductivity was also
recorded just prior to sloughing (11.5+ 1.0 uSh™!; #44=3.2, P=0.002).
The rate of efflux of ions returned to baseline levels rapidly (within
30 s; Fig. 1) after sloughing (#45=0.67, P=0.5). The majority of the
ions lost by the toads were sodium and chloride. The estimated net loss
of Na* during the hour incorporating the sloughing event represented
~3.3+0.5% of the animal’s total ECF Na* pool.

There was no significant difference in the net change in mass
between those that sloughed (0.2+0.3% h~!') and the intermoult
group (—0.4+0.6% h~") during the conductivity measurements (f,,=
—0.01, P=0.99; Fig. 2B), and the duration of sloughing also had no
effect on the change in M, between treatments (¢30=1.16, P=0.25).

Electrophysiological properties of the skin

There was no significant difference in the transepithelial potential
(mV) and resistance (Q cm?) between the intermoult and post-
sloughing groups when the toad skin was perfused with Ringer
solution on both sides (Table 1). However, the post-sloughing group
showed a significant increase in /. (15.4+2.7 uA cm™") compared
with the intermoult group (8.0£0.9 uA cm™!; Table 1). This
represents a rate of active Na® transport (influx) of
1.6x1071%+3.2x107!" mol s™! after sloughing.

When the skin was perfused with freshwater on the apical side of
the chamber, the transepithelial potential did not differ significantly
between the intermoult and post-sloughing group (Table 1);
however, there was a significant decrease in transepithelial
resistance in the post-sloughing group compared with the
intermoult group (Table 1).
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Fig. 2. Change in rate of conductivity and M,, of R. marina during sloughing. (A) Rate of change in conductivity (uS h~") represented on a logarithmic scale
between intermoult, pre-sloughing, sloughing and post-sloughing group. Data are meansts.e., **P<0.01 and ****P<0.0001. (B) Change in My, (% h~") in the
conductivity experiment between the intermoult and sloughing group. Data are presented as individual points of the mean change in mass (circles) with the overall
mean represented as a black line. n=9 for intermoult, pre-sloughing, sloughing and post-sloughing groups.
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Table 1. Electrophysiological properties of cane toad (Rhinella marina) epidermis between the intermoult and post-sloughing group

Intermoult Post-sloughing
n Meants.e. n Meanzs.e. ANCOVA
Epidermal electrophysiological parameters
Transepithelial potential (mV) 8 -5.5+£0.6 8 -3.9+0.7 F143=1.9, P=0.2
Resistance (Q cm?) 8 3029+433 6 26781726 F4,41=0.15, P=0.7
Short-circuit current (WA cm=2) 8 8+0.9 8 15.4+2.7 F4,13=6.2, P=0.03
Sodium flux (mol s=7) 8 8.3x10~"1£9.5x10~12 8 1.6x10-10£3.2x10~""
Apical freshwater treatment
Transepithelial potential (mV) 6 —-13.212.4 8 -19.6+2 F114=3.4, P=0.09
Resistance (Q cm?) 8 12,219+1771 6 6349+1955 F4,11=5.4, P=0.04

Apical freshwater treatment represents the apical side of the epidermis containing 26 mmol NaCl in distilled water. n=sample size.

Blood plasma biochemistry

Hct, plasma osmolality, and sodium, chloride and potassium
concentrations were not significantly different between the
intermoult and post-sloughing animals (Table 2).

Skin thickness

There were no significant differences in skin thickness between
the intermoult and post-sloughing groups (73=—0.99, P=0.34;
Fig. 3). No morphological differences were observed between the
groups.

ENaC o-subunit and NKA o-subunit protein distribution,
abundance and gene expression

The NKA a-subunit was mostly distributed in the epidermis, with
little or no immunofluorescence staining in the dermis layer (Fig. 4).
The submucosal glands within the skin also showed strong NKA o~
subunit immunofluorescence in both intermoult and post-sloughing
animals. Within the epidermal layer, the NKA o-subunit was
concentrated around the basolateral membranes in the principal cell

layer (excluding the s. corneum). NKA o-subunit distribution in the
epidermis of all intermoult animals remained relatively uniform
(Fig. 4A). In the post-sloughing group, however, NKA o-subunit
distribution within the epidermis was less well defined. In some
animals, NKA o-subunit distribution was concentrated in the most
superficial layers of the epidermis, while in other animals the NKA
o~subunit appeared to be restricted to cells in the basal layers of the
epidermis (Fig. 4B).

Semi-quantitative western blotting for the NKA o-subunit (o5
antibody) identified a single band of approximately 100 kDa from
membrane-enriched skin cell homogenates. NKA o-subunit
abundance was significantly higher (F; ;,=9.5, P=0.009) in the
post-sloughing group relative to the intermoult group (Fig. 5). The
ENaC o-subunit antibody identified a single band of

approximately 75 kDa. The ENaC o-subunit abundance was also
significantly greater (F;,=8.8, P=0.01) in the post-sloughing
group compared with the intermoult group (Fig. 5), with up to a
2.5-fold increase in abundance occurring in some animals
(mean=1.62+0.16).

—Stratum corneum é’
—Stratum granulosum | g
. — Stratum germination |2
—|w

—Melonocytes
12}
— Stratum spongiosum qé)
=]

Epidermis

Dermis

Fig. 3. Differences in the thickness of the epidermis between intermoult and post-sloughing R. marina. Transverse section (6 ym) of haematoxylin and
eosin (H&E)-stained ventral skin. Average epidermal thickness of (A) 27.24+5.83 pm from an intermoult toad (SVL 106 mm) and (B) 39.2+5.83 pym from a post-
sloughing toad (SVL 107 mm). gg, granular gland. Scale bar: 50 ym. EXIF data: /2.2, ISO-32, exposure time 1/50 s.

2031

>
(@)
9
Q
(2]
©
-+
C
Q
S
=
()
o
x
L
Y
(©)
©
c
e
-]
(®)
_




RESEARCH ARTICLE

Journal of Experimental Biology (2017) 220, 2026-2035 doi:10.1242/jeb.151738

Table 2. Comparison of cane toad (R. marina) blood plasma biochemistry between the intermoult and post-sloughing group

Intermoult Post-sloughing
Blood biochemical parameters n Meanzs.e. n Meanzs.e. ANCOVA
Haematocrit (%) 14 19.8+1.6 10 23.5+£3.7 F121=0.9, P=0.34
Sodium (mmol I~ 11 116+3.3 10 113+£2.6 F1.15=0.6, P=0.45
Chloride (mmol I=") 10 92+6.3 9 80+4.8 F116=1.8, P=0.2
Potassium (mmol I=") 11 3.320.1 10 3.4+0.1 F115=0.5, P=0.47
Osmolality (mosmol 1) 11 236+6.2 10 241+8.4 F118=0.2, P=0.65

The relative expression of NKA (ATP1Al) and ENaC
(SCNN1A) mRNA transcripts in the epidermis was not
significantly different between the intermoult and post-sloughing
group (Pfaffl ratio: 1.137, F'; 5=0.06, P=0.8 and Pfaffl ratio: 2.14,
F,5=2.5, P=0.1, respectively; Fig. 6).

DISCUSSION
Amphibian skin is a complex multifunctional organ, with the ability to
actively regulate the transcutaneous movement of ions and water
necessary for maintaining physiological homeostasis (Feder and
Burggren, 1992). Understanding the impact of sloughing on skin
function is important to comprehend how amphibians maintain
homeostatic balance in the face of frequent and significant
perturbations. The present study demonstrates that during sloughing,
amphibians in freshwater environments are able to compensate for an
increase in the rate of transcutaneous sodium loss by increasing the
abundance of sodium transporters in the skin, which in turn allows
amphibians to maintain their internal electrolyte homeostasis. These
findings suggest that although sloughing causes an acute change in
skin osmotic function, the effects are relatively transient and are offset
by compensatory pathways. How sloughing may impact species with
more frequent sloughing regimens or those with disease-related
sloughing dysfunction, however, remains to be determined.
Sloughing-associated skin disturbances began ahead of the
physical act of sloughing; indeed, there was a 10-fold increase in
the rate of ion efflux in live toads prior to the initiation of sloughing.

A B

Fig. 4. Differences in Na*/K*-ATPase (NKA) distribution between
intermoult and post-sloughing R. marina. Immunofluorescence staining of
NKA a-subunit (green) in transverse sections (6 um) of ventral skin. (A) Bottom
image: NKA distribution within the epidermis of an intermoult animal (SVL
106 mm) remains uniform throughout the epidermis. (B) Bottom image: NKA
distribution is concentrated in the basolateral area of the epidermis in a post-
sloughing animal (SVL 107 mm). Cellular nuclear DNA was counterstained in
DAPI (blue, top). Scale bar, 10 ym.
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This finding is consistent with previous studies showing that
changes in the electrophysiological properties of amphibian skin
often precede the physical sloughing event. Specifically, a decrease
in /. has been observed during the initiation of sloughing (in vitro)
in B. bufo (Larsen, 1970, 1971a,b). In isolated amphibian skin, /. is
predominately linked to active sodium uptake (Koefoed-Johnson
and Ussing, 1958). A reduction in [ across the skin during
sloughing therefore probably reflects a reduction in active
transcutaneous sodium movement. The mechanistic basis for this
pre-sloughing change in ion transport remains unclear; however,
preparatory shifts in cellular differentiation within the epidermis
have been hypothesised to contribute to the observed changes in
electrical readings in pre-sloughing amphibians (Larsen, 1971b).
Potentially, cellular apoptosis in the s. granulosum as a consequence
of its transition to the s. corneum (Elias and Shapiro, 1957) may
degrade the ion regulatory transporters responsible for maintaining
the potential difference across the skin. This reduction in transporter
abundance or activity would lower active sodium uptake rates and
contribute to the net increase in sodium loss across the skin.
Coincidently, an increase in cutaneous granular secretions to form
the mucus layer during sloughing may also contribute to ion loss
(Larsen and Ramlev, 2013).

Although some physiological changes preceded sloughing, by far
the greatest disruption to skin function in R. marina occurred during
sloughing itself. Sloughing substantially increased the rate of
cutaneous ion efflux in R. marina, indicating that skin function
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NKA a-subunit ENaC a-subunit

Fig. 5. Relative abundance of NKA a-subunit and epithelial sodium
channel (ENaC) a-subunit in ventral epidermal tissues of intermoult and
post-sloughing R. marina. Individual data points are presented as the
mean of three technical replicates of NKA a-subunit (intermoult n=7, post-
sloughing n=8) and ENaC a-subunit (intermoult n=7, post-sloughing n=8).The
black line indicates the overall mean. Representative western blots associated
with each transport protein (top) show the molecular mass (M), an intermoult
animal (IM) and a post-slough animal (PS). *P<0.05 and **P<0.01.
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Fig. 6. Comparison of NKA and ENaC mRNA relative expression in ventral
epidermal tissues of intermoult and post-sloughing R. marina. Absolute
gene expression (ACt) was normalised to expression of the housekeeping
gene GAPDH. Individual data points are presented as the mean of three
technical replicates for each ion transporter (n=4). The black line indicates the
overall mean.

(specifically active ion transport) was temporarily disrupted during
sloughing. In addition, contributing to this net increase in Na*
efflux, the electrical resistance across the skin was significantly
lower in post-sloughed toads, indicating that paracellular resistance
to passive ion movements was substantially lower across newly
sloughed skin. This reduction in cutaneous resistance following
sloughing may be attributed to incompletely formed tight junctions
in the new s. granulosum layer (Budtz and Larsen, 1975) that
permits the passive paracellular movement of ions out of the animal
along their concentration gradient (Larsen, 1970, 1971b, 1972). In
B. bufo, the reduction in skin resistance can be observed a few hours
before the initiation of sloughing (Larsen, 1970, 1971b), suggesting
the process of epidermal renewal and formation of the new
s. corneum increases the skin’s permeability before sloughing
(Budtz and Larsen, 1975).

Despite the increased loss of Na' preceding and during
sloughing, toads were able to maintain osmoregulatory
homeostasis with no changes in plasma solute concentration or
osmolality detected post-sloughing. This indicates that either the
transient nature of the sloughing-induced changes are not
substantial enough to disrupt whole-animal ionic homeostasis or
active mechanisms are employed during or shortly after sloughing
to counteract or compensate for ionic and osmotic fluxes. Jorgensen
(1949), using in vitro measures of NaCl loss, estimated that the
overall amount of Na* lost during a sloughing cycle probably
reflects a relatively small component of a healthy, normal animal’s
extracellular sodium pool, consistent with the small net sodium loss
measured in this study. Compensatory changes to ion transport may
include a change in the activity or abundance or ion transporters in
the skin that allow sodium to be actively taken up across the skin
from the environment. Consistent with this hypothesis, we observed
a 2-fold increase in the /. across the skin of recently sloughed R.
marina, suggestive of an increase in active sodium transport.
Moreover, we observed a greater abundance of cutaneous ion
transporter proteins (NKA o-subunit and ENaC o-subunit) in
recently sloughed toads, suggesting that the increase in active
sodium transport may, at least in part, be ascribed to an increase in
the number of functional sodium transport proteins in the skin.
However, the I (the likelihood of the number of channels opened at
a particular time) alone cannot determine the functional activity of
ENaC, as the open probability is highly variable depending on
external factors (Anantharam et al., 2006; Kleyman et al., 2009);
thus, measuring amiloride-sensitive /. can quantify the functional
activity of ENaC (Sariban-Sohraby and Benos, 1986). In addition,

an increase in subunit abundance does not always indicate an
increase in functional activity of the whole protein (Sardella and
Kiiltz, 2009; Reilly et al., 2011). For example, the ENaC subunits
(o-, B- and y-subunits) alone cannot induce amiloride-sensitive
currents (Canessa et al., 1994), and in bullfrog (Rana catesbeiana)
tadpoles, ENaC is expressed in the skin but not in a functional state
(no amiloride-blockable Na™ transport present) until metamorphosis
(Takada et al., 2006).

Combined with the increase in /. consistent with an increase in
active ion transport, R. marina appears to increase NKA and ENaC
protein abundance to compensate for Na* losses incurred during
sloughing. The changes in /. with spontaneous sloughing are also
consistent in magnitude with those observed in toads following
aldosterone-induced sloughing events (Nielsen, 1969; Larsen,
1971a; Denefle et al., 1983), suggesting that the suite of
physiological changes that accompany sloughing in amphibians is
preserved regardless of whether the sloughing event is initiated
naturally or via exogenous hormonal stimulation.

While the sloughing-induced disruption to skin ionoregulatory
function in R. marina was relatively brief, amphibians display a
wide range of sloughing frequencies (Ohmer, 2016) and the net
impact of sloughing on physiological homeostasis may be greater
in species that slough more frequently. For example, toads in this
study sloughed about every 12 days, but some species of
amphibians slough as often as every 24 h (Bouwer et al., 1953;
Castanho and de Luca, 2001; Ohmer, 2016). In these frequently
sloughing species, disruptions to ion and water exchange during
sloughing are likely to require a greater energetic investment to
maintain ionic and osmotic homeostasis, which cumulatively may
represent a significant cost to the animal. In addition, exogenous
factors, both biotic and abiotic, that alter sloughing frequency
may increase or decrease the overall impact of sloughing on
physiological homeostasis. For example, increased sloughing
frequency has been observed in amphibians suffering from the
devastating disease chytridiomycosis (Ohmer et al.,, 2015).
Chytridiomycosis, a novel and often fatal cutaneous disease of
amphibians caused by the fungus Batrachochytrium dendrobatidis
(Bd), appears to disrupt electrolyte transport across the skin of
infected frogs (Voyles et al., 2007, 2012). Green tree frogs (Litoria
caerulea), infected with Bd slough as much as 25% more
frequently than uninfected frogs (Ohmer et al., 2015) and many
other amphibian species are reported to slough more frequently
when infected with Bd, though the evidence for this is largely
anecdotal (Berger et al., 1998; Davidson et al., 2003; Meyer et al.,
2012). While an increased sloughing rate may assist with removing
pathogens from the skin of infected animals (Meyer et al., 2012;
Cramp et al., 2014), sloughing also causes a temporary disruption
of'ionic and osmotic movements, which, if sloughing frequency is
increased, may contribute to the fatal loss of internal ionic
homeostasis in clinically infected frogs (Voyles et al., 2009).
Thus, future studies that integrate the physiology of sloughing with
Bd infection are required to more fully understand the mechanistic
basis for the morbidity associated with cutaneous Bd infection.
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Fig. S1. Relationship between conductivity readings (G, pS) and known NaCl (c;, mmol 1Y) concentrations show a
predicable linear relationship (¢ = 0.015 x G - 0.064, r? = 0.99).

The RO only solution and solutions where the animal was in the intermoult phase did not have any

detectable sodium or potassium.
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