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Summary

The promise of the genome project was that a complete
sequence would provide us with information that would
transform biology and medicine. But the ‘parts list’ that
has emerged from the genome project is far from the
‘wiring diagram’ and ‘circuit logic’ we need to understand
the link between genotype, environment and phenotype.
While genomic technologies such as DNA microarrays,
proteomics and metabolomics have given us new tools and
new sources of data to address these problems, a number
of crucial elements remain to be addressed before we can
begin to close the loop and develop a predictive
quantitative biology that is the stated goal of so much of
current biological research, including systems biology. Our
approach to this problem has largely been one of

integration, bringing together a vast wealth of information
to better interpret the experimental data we are generating
in genomic assays and creating publicly available
databases and software tools to facilitate the work of
others. Recently, we have used a similar approach to
trying to understand the biological networks that underlie
the phenotypic responses we observe and starting us on the
road to developing a predictive biology.

Glossary available online at
http://jeb.biologists.org/cgi/content/full/210/9/1507/DC1
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Introduction

Although the first draft of the human genome sequence was
published in February 2001, we remain far from the promise
of a genome-inspired revolution in our understanding of human
health, development and disease. We are learning that the
genome itself is far more complex than we had originally
imagined, that variation between individuals is greater than
first estimated, and that defining a complete collection of genes
requires far more than elucidating likely protein-coding
regions. While each of these is profound, solving any or all of
them will not solve the fundamental problem of understanding
how the program stored within the genome plays itself out as
the organism grows, adapts, and responds to a wide range of
stimuli. As we are learning, the situation is much more complex
than we may have previously imagined.

One of the emerging principles in biology is that in most
cases it is not individual genes but rather biological pathways
and networks that drive an organism’s response to a wide range
of stimuli and the development of the range of phenotypes we
observe. We are coming to understand that there are many
diverse, but biologically significant networks, including
metabolic networks, signal transduction networks and
transcriptional regulatory networks, among others. In order to

fully understand organisms and the manner in which they play
out their genetic programs, we must develop tools and
approaches to understand not only the structure of the networks
that exist, but also the rules that govern their behavior and the
interactions between elements in each biological system.

We are also coming to recognize that biological systems
have a stochastic component that governs the fundamental
interactions between molecules within the cell. Developing a
full understanding of these processes is a significant challenge
given the current limitations of our experimental techniques
that most commonly look at millions of cells where we see an
‘ensemble average’ of the behavior occurring at a cellular level;
an average that can obscure the random variance that occurs
within cells. In most situations, this average behavior is enough
to understand the biological systems that we study. However,
a full understanding of disease processes or of a physiological
response, in which systems move from their steady state
conditions to other cellular states, will require that we account
for stochastic events that push the system away from their
preferred states.

In this review, we will examine some of these developments
from the perspective of analyzing gene expression data. While
technologies such as those supporting proteomics and
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metabolomics studies are rapidly developing, analysis of gene
expression using DNA microarrays and quantitative RT-PCR
is much more mature and provides a natural starting point for
developing approaches that will lead us to a new understanding
of the fundamental principles in which biological systems
function. Much of what is presented here derives from the
integrative approach we have developed for the analysis of
large volumes of data generated from microarrays, combining
these with other, diverse sources of available information to
produce a more complete understanding of the observed
biological response. These have included integration of gene
expression data with genetic mapping information (Cook et al.,
2004), gene functional role classification and metabolic
pathway assignments (Larkin et al., 2004), phenotypic
classification (Flores-Morales et al., 2001; Malek et al., 2002;
Shan et al., 2002), metabolic profiling patterns, and clinical
data (Bloom et al., 2004; Eschrich et al., 2005).

Biological systems as information management systems

Biological systems carry out a wide range of complex tasks,
from the level of metabolic and signaling pathways to that of
the cell and to the entire organism. At every level, these
processes require the coordination of diverse processes and the
management of complex information. One way to view
biological systems (Fig. 1) is to treat them as hierarchical
systems in which information is stored and exchanged through
the various levels, running from the DNA messages stored in
cells through RNA and proteins to pathways and networks that
maintain cells and their metabolic and signaling processes, and
that these, in turn, influence how organisms themselves
function. Further, one can investigate how genetic variation
through populations influences phenotypes and how organisms
interact with their environments to form ecologies.

With this intellectual framework, one can then envisage an

Levels of biological information
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Fig. 1. Biological systems can be thought of as ‘information
management’ systems with multiple levels of organization that
interact and influence each other. The study of biological systems has
a long history and although high-throughput “’omics’ approaches are
expanding their range of applications, integrating information from
various levels can provide powerful insights for the interpretation of
high-throughput data.

integrative strategy for analyzing data obtained on such
systems that builds on our long history of studying processes
at all levels, from molecular biology on the smallest scale to
medicine and ecology on the largest. Our work has shown that
by combining information across these scales we can gain
insight that would not be possible with data coming from any
single domain. This use of ancillary information in analyzing
gene expression data has proved essential in moving us along
the path from data to knowledge and from knowledge to
understanding.

A natural starting point for organizing and integrating this
information was the products of genome sequencing projects,
including complete genome sequences that are being produced
at an increasing rate for a wide range of eukaryotic species. The
degree to which these genomes are truly complete varies across
species, however, and missing genes, found in other mammals
and amplifiable from genomic DNA, can even be identified
within the now ‘finished” human genome sequence. While
these completed genomes represent a tremendous technological
achievement, and while the process of completing the sequence
and identifying and annotating the genes remains an ongoing
process, we must remember that these sequences do not
represent absolute and final truth. Rather, the complete
genomes represent hypotheses that must be tested and
validated. Similarly for the catalogues of genes that have
emerged from genome sequencing projects; additional protein-
coding genes remain to be found within the sequence, alternate
splice forms are woefully under-identified, and non-coding and
other functional RNA transcripts that may well confer
important phenotypes are greatly undercounted.

The first step: associating probes, genes and annotation

As noted previously, our focus here will be on DNA
microarray assays, although much of what will be presented
can be generalized to other applications. As with any assay, the
starting point here is to understand precisely what is being
measured. On a DNA microarray, each individual element
represents a distinct transcript and knowing which genes — and
which other information about those genes — map to each
element is essential for any real analysis of the data. Although
the proliferation of robust commercial arrays makes it
convenient to rely on the annotation for the probes that are
provided by the manufacturer, even a ‘catalog array’ may have
probes whose identity may still be in flux.

To address this problem, we have organized information
from genome sequencing projects, the sequencing of expressed
sequence tags (ESTs), and other information, into The Gene
Index databases (Lee et al., 2005; Liang et al., 2000) (TGI;
http://biocomp.dfci.harvard.edu/tgi), a collection of more than
100 species-specific databases representing likely transcripts in
a wide range of eukaryotic species. Each of these freely
available databases is constructed using open-source software
tools (Pertea et al., 2003) using nearly identical protocols. EST
and gene sequences from a species of interest are obtained from
public repositories such as GenBank, cleaned to remove
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contaminating vector and other sequences, and placed into
groups based on shared sequence similarities. The resulting
clusters are assembled at high stringency as elements of a
‘transcriptome sequencing project’. The resulting Tentative
Consensus (TC) sequences, largely similar to the
transcriptional units described elsewhere in this issue by Piero
Carninci (Carninci, 2007), are searched against public
databases and subjected to a number of other analyses aimed
at providing extensive annotation and identifying relevant
biological features, including putative functional assignments,
mapping to Gene Ontology terms (Ashburner et al., 2000) and
KEGG pathways (Ogata et al., 1999), links to relevant records
in PubMed, and identification of potential transcribed single
nucleotide polymorphisms (SNPs).

Wherever possible, the TCs are mapped to available genome
sequences, allowing identification of genes and splice variants
— often supported by data from multiple species — that have not
yet been annotated in the ‘official’ genome representations
such as EnsEMBL (Hubbard et al., 2002). While this might
seem trivial, understanding which splice forms exist can inform
the results of a microarray experiment and provide valuable
information for their interpretation (Larkin et al., 2005). Thus
a more comprehensive list of transcripts, particularly in light
of what we are learning about the importance of non-protein-
coding transcripts (see papers by Mattick and Carninci,
elsewhere in this issue) (Mattick, 2007; Carninci, 2007) is an
important addition to genome annotation. Beyond this,
mapping TCs to the genome provides the opportunity to
integrate them with other information such as genetic linkage
and quantitative trait loci (QTL) maps.

The Eukaryotic Gene Orthologue database (EGO;
http://biocomp.dfci.harvard.edu/tgi/ego) builds on The Gene
Index databases to create a consistent framework for
comparative genomics. EGO attempts to identify orthologous
genes across species and kingdoms using a parsimony-based
approach that searches for the best sequence matches across
three or more species (Lee et al., 2002). Building on the TGI
and EGO databases, RESOURCERER takes widely used
microarray platforms and genome sequence datasets such as
National Center for Biotechnology Information (NCBI)’s
RefSeq and provides extensive annotation and cross-
referencing capabilities (Tsai et al., 2001). RESOURCERER
annotates microarray resources with TC numbers, potential
orthologues, genomic locations, GO terms, EC numbers, links
to PubMed references, and a wide range of other information
that can be used in data analysis. RESOURCERER also allows
users to associate resources across platforms and across
species, essentially providing a linking table that identifies
probes on one array corresponding to probes on another,
facilitating comparison between experiments.
RESOURCERER also links microarray probes to genetically
defined regions, associates microarray probes with QTL maps
in mouse and rat, and allows other analyses, such as extraction
of upstream promoter regions for probes that can be mapped to
genome sequences. Versions of RESOURCERER exist for
both animals (http://biocomp.dfci.harvard.edu/cgi-bin/magic/
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rl.pl) and plants
magic/rl.pl).

(http://biocomp.dfci.harvard.edu/cgi-bin/

Tools for data analysis

We have also invested significant effort in the development
of tools to facilitate analysis of microarray data. This has
resulted in a collection of sophisticated open-source tools
known collectively as TM4 (Saeed et al., 2003) and freely
available for download (http://www.tm4.org). TM4 consists of
four primary software tools. MADAM is a comprehensive
DNA microarray database and data entry interface that allows
collection of the information relevant for any particular assay,
including that required by the MIAME standard (Ball et al.,
2002; Brazma et al., 2001). MADAM also exports MAGE-ML
(Spellman et al., 2002) output that can be submitted to public
databases such as NCBI's GEO and the FEuropean
Bioinformatic Institute’s ArrayExpress, as is often mandatory
for publication. Spotfinder is an image processing tool written
in machine-independent C/C++ for use with spotted two-color
microarrays. Spotfinder includes a range of quality control
tools to help users identify high and low quality assays and
eliminate uninformative hybridizations. MIDAS provides a
variety of normalization methods, including lowess (Yang, 1.
et al., 2002; Yang, Y. et al., 2002) and variance regularization
(Huber et al., 2002; Yang, Y. et al., 2002), as well as a number
of data filtering options. To document the process, MIDAS
produces a PDF log file containing a complete record of all the
analyses and parameters along with diagnostic plots and
summary statistics.

The most widely used tool in the TM4 suite is MeV, a data-
mining tool that combines a number of clustering and statistical
algorithms in an easy to use menu-driven format. Users of MeV
can load data, use a t-test or Significance Analysis of
Microarrays (SAM) (Tusher et al., 2001) to identify genes that
correlate with the phenotypes under study, and explore
relationships between gene expression profiles using
hierarchical clustering. Gene sets identified during analysis can
be subjected to a meta-analysis using EASE (Hosack et al.,
2003) which, as described below, looks for over-represented
Gene Ontology terms (GO terms; http://www.geneontology.
org) and KEGG pathways (http:// www.genome.jp/kegg) in the
set relative to their representation on the array. MeV is
undergoing continuous improvement to include a wide range
of new algorithms, and new releases happen at least twice per
year.

Examples of integrative analysis

Assembling these databases and creating analysis tools is,
however, only the first step. For these to be of value, they must
be both useful and used. Consequently, in developing these
tools, we have focused on addressing real biological problems.
Here we describe two examples requiring very different
analytical strategies that illustrate how these tools have been
useful in the analysis of gene expression data and its
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interpretation through integration with other sources of
information.

Integration of expression with genetic mapping: innate
immunity in the mouse

The innate immune response represents an organism’s first
line of defense against bacterial infection. Key elements in the
innate immune system are the cell surface receptors known as
the Toll-like receptors; in the context of this study, the key
receptor is Toll-4 (TLR4) which, when it detects the presence
of LPS, the lipopolysaccharide on the coats of Gram-negative
bacteria, triggers a well-characterized signaling cascade
resulting in recruitment of inflammatory cells, triggering of the
adaptive immune response, and generation of a number of
patho-physiological  states, including asthma. Our
collaborators, Donald Cook and David Schwartz, had been
studying a model of innate immunity in the mouse and had
identified two strains, C57/BL6 and DBA/2J which, despite
possessing wild-type TLR4 receptors, had very different
phenotypic responses to inhaled LPS. Their interest was in
understanding the mechanisms that drive these differential
responses, and in examining the responses of the BXD
recombinant-inbred strains, derived from C57/BL6 and
DBA/2]J, they saw a spectrum of responses spanning the range
between the parentals and extending beyond it. This suggested
that the response to LPS was mediated by interaction of
multiple genes, and so a genome-wide microarray-based
approach promised the opportunity to discover genes whose
expression might ultimately lead to the observed phenotypes.

The parental strains, the three highest-responding, and three
lowest-responding strains, were exposed to LPS and compared
to matched control animals using a spotted cDNA microarray
containing nearly 27 000 gene-specific probes (Cook et al.,

2004). This identified approximately 425 genes that were
significantly differentially expressed between the high- and
low-responding strains. At this stage, we faced a problem
common in the analysis of microarray data: placing a long list
of responsive genes into a biological context. We chose to
develop QTL maps, identifying genetic markers whose
inheritance correlates with the severity of the phenotype. Using
a series of F2 crosses and building on the exquisite genetic
resources available in mouse, we identified two regions in the
mouse genome containing approximately 525 genes that could
be linked to differences in either of our phenotypic measures:
TNF-a levels or the recruitment of peripheral mononucleocytes
to the lung (as measured by bronchial lavage). We then used
RESOURCERER to compare the two lists, looking for genes
that were both genetically linked to the response and
differentially expressed. We expected, by chance, 13 genes in
the overlapping set but, in fact, we found 46 (P<1072°), clearly
suggesting that these genes were significantly linked to
expression of the phenotype.

We then used quantitative RT-PCR to compare expression
for these 46 genes between LPS-exposed and control animals
in the parental and BXD strains (Fig. 2). It is worth noting that
if one orders the strains by increasing the number of
upregulated genes, this closely resembles the ordering based on
magnitude of the phenotypic response, consistent with them
being related. We also realized that the gene expression profiles
themselves could be used as quantitative traits for constructing
QTL maps, something beautifully demonstrated by Eric Schadt
and his group at Rosetta in a paper where they defined precisely
this concept, defining the ‘expressed QTL’ (eQTL) and
showing that one could use it to find interactions between genes
in producing a phenotype (Schadt et al., 2005).

One might ask whether gene expression and genetic analysis
together give us enough information to completely understand

-5.0

wom oM ow s ¢ om

1 1 M o o+ A A W
5 85 85 5 85 85 85 8
4 4 4 4 44 49 49 A
moom o m m o W W W
[ I I R v |
F e S = = S
w2 w1 e w o e w1 o

=
=
o
[)

W o~ [T} —~ =] 1 omotl o~ = om w
e I T L T T T T = B o B B B (R N R = B
8 B 8 85 58 8 5§ 58 8 8 58 8 8 8 8 8 8 8 8
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 A4 4 4
m m m ™ ™ o oW o o om oo @™ @§ o™ bW om m om m
F T o L o L o o I I e |
e = T o I I = o o L .
e w1 e uw w1 e w2 w1 e w o e w o e w1 o uw w1

Fig.2. Genes identified as
both differentially expressed
and also genetically linked to
the differential response to
inhaled LPS in a mouse model
of environmentally induced
asthma.  Responses  were
measured by qPCR,
comparing exposed mice to
matched controls from the
same strain. The ordering of
the strains by expression levels
for these genes closely mimics
that produced when ordered by
phenotype.
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the observed phenotypes. The answer, not surprisingly, is that
they do not. An example of the limitations of this approach can
be seen in the BXD 29 strain. This strain shows the lowest
phenotypic response using any measure and in Fig. 2 one can
see that it hardly produces any transcriptional response
following LPS exposure. This was puzzling because we
expected to see at least some response as both parental strains,
and therefore the BXD strains, should have wild-type TLR4
receptors. When we sequenced the TLR4 receptor gene in
BXD29, however, we discovered that it had developed a
spontaneous mutation rendering it insensitive to LPS exposure.
As one might expect, use of QTL and gene expression analysis
may miss key genes linked directly to the phenotype through
mutation but which are not themselves differentially expressed.

Extracting meaning using GO-term meta-analysis

Another approach to placing a list of genes into a relevant
biological context is to use the annotation for those genes in
sophisticated ways. In collaboration with Haralambos Gavras
of Boston University, we analyzed gene expression in a mouse
model of hypertension and used Gene Ontology assignments to
facilitate the interpretation of the data (Larkin et al., 2004).
Hypertension is a significant disease affecting nearly one in
four Americans and is strongly associated with heart disease,
the leading cause of death in the United States. Angiotensin II
(Ang 1II) is a significant contributor to the development of
hypertension and target organ damage and is known to produce
vasoconstriction and increased blood pressure following acute
exposure, and cardiac necrosis, fibrosis and hypertrophy
following chronic exposure. Ang II is produced by cleavage of
Ang I by Ang I Cleavage Enzyme (ACE); ACE inhibitors are
one of the primary therapeutic classes used in the treatment of
hypertension.

Using a mouse model of acute and chronic exposure to Ang
IT developed by Gavaras and his coworkers, we used DNA
microarrays to compare patterns of gene expression that were
induced following both acute (24 h) and chronic (2 week)
exposure to that of matched controls (Larkin et al., 2004). DNA
microarray expression profiles were analyzed using SAM
(Tusher et al., 2001) to identify genes significantly up- and
downregulated in cardiac tissue for both acute and chronic
treatments, as well as those that were generally responsive to
Ang II. To make sense of the numerous gene lists, we used
functional class assignments based on assigned Gene Ontology
terms (GO) (Ashburner et al., 2000). GO attempts to describe
each encoded protein by the molecular function it carries out,
the biological process in which it participates, and the cellular
component to which it is localized. We also examined
assignments of gene products to metabolic and other pathways
in both the KEGG (Ogata et al., 1999) and GenMapp databases
(Dahlquist et al., 2002).

Rather than simply producing lists of associated terms and
pathways, we instead looked for classes that were over-
represented relative to the population of probes on the array.
We used EASE (Hosack et al., 2003), a method developed by
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Doug Hosack and Glynn Dennis at the National Institute of
Allergy and Infectious Disease (NIAID) of the US National
Institutes of Health, which was integrated into MeV (Saeed et
al., 2003). EASE uses a Fisher Exact test to compare the
fractional representation of any one class within a set of
‘significant’ genes to its representation on the array, estimating
the probability that any group is over-represented by chance.
For example, if 30% of the genes on an array were energy
metabolism genes, then in any randomly selected set of genes,
we would expect about 30% of them to be related to energy
metabolism. However, if we found 70% or 75% of the genes
in our set to be classified as energy metabolism, this would be
very suggestive that the phenotypes we are analyzing are
related to changes in expression of energy metabolism genes.

Fig.3 shows a heat map and hierarchical clustering
dendrogram for the GO term assignments found to be
significant with the heat map showing —log;o(P-values) based
on EASE analysis. This analysis associated a wide range of
biological responses to Ang II treatment and suggested a
potential mechanism. One surprising result was the
identification of group of genes significantly downregulated in
acute Ang II exposure but upregulated following chronic
exposure and which mapped to significantly over-represented
KEGG pathways annotated as Alzheimer disease and
neurodegenerative disorders pathways. The Alzheimer disease
pathway is particularly interesting, as Alzheimer disease
plaques and heart disease have been shown in clinical studies
to co-occur (Sparks et al, 2000). Heart disease and
hypertension may be a forerunner to Alzheimer disease, and
Alzheimer disease-like 3-amyloid plaques have been found in
the brains of non-demented individuals with heart disease
(Sparks et al., 2000). Furthermore, cardiac amyloidosis is
known to cause restrictive cardiomyopathy (Artz and Wynne,
2000), a particularly lethal form that does not respond to
standard treatments. This was the first analysis to report the
upregulation of a brain-specific pathway in cardiac tissue, but
a pathway has been clinically identified as a pre-determining
risk factor for a neurological disorder. This suggests that the
investigation of therapeutics developed for the treatment of
plaque formation in Alzheimer disease may act as a viable
alternative therapy for hypertension or cardiac amyloidosis. It
also argues for the proactive treatment of hypertension as a way
of reducing risk for Alzheimer disease. The interrelationship
between heart disease and Alzheimer disease and their
treatment has already been demonstrated by the effects of
statins, used to lower cholesterol and treat ischemic heart
disease, on Alzheimer disease. Although some statins appear
to be protective against subsequent development of Alzheimer
disease, there are also indications that patients with Alzheimer
disease may be more susceptible to adverse effects of statins
than are age-matched controls (Algotsson and Winblad, 2004).

Although the methods employed in this analysis did provide
important insight, their application was somewhat limited.
While broad classes of genes can provide insight into the
general response of an organism to a particular stimulus, they
are not precise enough to provide direct inferences of
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mechanism. Rather, they provide hypotheses that
can be further refined and tested in the laboratory.
Based on our experience with EASE, we also
developed MeSHer (http://biocomp.dfci.harvard.
edu/mesher.html) (Djebbari et al., 2005), which
uses Medical Subject Headings assigned to
PubMed references associated with particular
genes, but this approach too suffers from similar
limitations. Further, both EASE and MeSHer are
limited by the scope of functional assignments,
as many genes still lack functional classes, and
for most genes the classification is not
comprehensive. What are truly needed are
methods that will allow more comprehensive
analysis of the mechanisms associated with the
phenotypes we observe based on the pathways
and networks that are underlie cellular processes.
Nevertheless, while suggesting potential new
areas of investigation, associations discovered
through such analyses remain hypotheses that
must be validated experimentally.

Modeling pathways and networks

Organisms use a combination of cis- and trans-
acting elements to respond to intra- and
extracellular environmental stimuli by regulating
gene and protein expression. The biological
process of transcription begins with the binding
of transcription factors to specific sequence
motifs lying upstream to a gene’s transcription
initiation site. This induces conformational
changes in the DNA and initiates the assembly of
the RNA polymerase complex. This process is
rather complex, with promoters, inhibitors and
enhancers interacting in complex ways in the
regulation of gene expression. One consequence
of transcriptional activation is that the levels of
transcription factors themselves can be affected
through the same promotion and repression
mechanism. What emerges is not a single set of
interactions, or even a single pathway, but a
complex network of interacting genes and gene
products. In principle, it is this network and the
interactions between its components that we
would like to understand, since this underlies the
way in which organisms respond to
environmental and other cues.

Fig.3. Heat map and hierarchical clustering
dendrogram, in which the elements being clustered are
the GO term assignments and the values represented
in each cell are the —logjo(P-values) of this being
significantly different from the null hypothesis, based
on EASE analysis. From Larkin et al. (Larkin et al.,
2004).
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A natural approach to modeling this process is to assume that
there is some logical combination of elements that must be
present in the cell in order to initiate transcription.
Fundamentally, this process is governed by a network of
interacting components connected by pair-wise interactions.
One way to conceptualize these interactions is to represent the
components as ‘nodes’ connected to each other by ‘links’ or
‘edges’ (most often directed edges), such that the edges
represent the interactions between any two components. In this
way, we can combine elements such as genes, proteins,
metabolites and other factors, and represent them as a network,
or graph, that can be modeled in a variety of ways.

Such a graph can represent the relationships between
elements within a network on two levels. First, the nature of
the interactions between the elements can be reflected in the
architecture of the graph — the patterns of nodes and edges —
and the conditional relationships between the graph elements,
so that we know which respond to which others. Second, a set
of network parameters can describe the strength of the
dependencies between elements. For example, if two nodes, A
and B, are connected by an edge, then A and B are dependent
in some way. Such an interaction might model a transcription
factor, B, that activates the expression of a particular kinase,
A. But if A and B are separated by a third node C, then A and
B are conditionally independent, given C. Here one might
imagine that a transcription factor B activates expression of a
second transcription factor C, which in turn induces expression
of the kinase A. To model biological systems, we have to define
the rules by which B activates C and C activates A, taking into
account important physical parameters such as expression
levels. We can, of course, build up even more complex
interactions, such that any node can have multiple incoming
edges and, consequently, its activation can depend on complex
interactions between those input edges. To model biological
systems, the challenge is to derive both the network
architecture and the set of rules by which the inputs to any node
interact to produce the output.

These rules can take on a variety of complex forms, and
several gene network modeling techniques have been applied
to the analysis of microarray data, including weight matrices
(Weaver et al., 1999), Boolean networks (Akutsu et al., 1999),
and differential equations (Chen et al., 1999), but Bayesian
networks (BNs), in particular, have shown the greatest promise
in the analysis of expression data (Friedman et al., 2000).
Formally, Bayesian networks are directed acyclic graphs
(DAGS) in which nodes represent random variables (typically
genes or gene products, referred to hereafter as genes) and
directed edges represent dependencies between variables
(interactions between the genes); conditional probability
distributions associated with each node imply conditional
independence statements that describe how the state of one
gene influences the state of another. Bayesian networks are
particularly appropriate to the study of biological systems as
the underlying variables are probabilistic, can be discrete
(on/off) or continuous, and describe variation across
conditions. Example variables include mRNA concentrations,
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T
Gene 1 )
( Gene 2 > ( Gene 3 >
~— - -

1 0.7 I

Gene1 Gene 2=1IGene 1
-1 0.1
0 0.2

Q Gene 4 >

Fig. 4. An example of a Bayesian Network model for four genes. If
we assume that Gene 1 activates Gene 2, then we can construct a
conditional probability table (shown at the right) that captures our
observations of the state of Gene 1 when we observe Gene 2 to be
upregulated. Here the values for Gene 1 of —1, 0, and +1 represent
states where Gene 1 is downregulated, unchanging or upregulated,
respectively.

protein concentrations, protein modifications or complexes,
metabolites, experimental conditions, genotypic information,
or phenotypes such as prognoses or drug susceptibility.

Consider a simple model of a Bayesian Network (Fig. 4), in
which we assume that Gene 1 controls other genes. If we focus
on Gene 2, its ‘parent’ is Gene 1. We can describe the observed
relationship between these two genes by constructing a
conditional probability table showing the likelihood that we
observe Gene 2 to be upregulated (Gene 2=1) given that we
also observe the state of Gene 1. In the example in the figure,
we find that the probability that Gene 2 is upregulated given
Gene 1 is upregulated is 0.7. This value may be interpreted as
Gene 1 activating Gene 2. Bayesian Networks encode
dependencies in the data such that the only dependencies are
between a gene and its direct parents.

Applying a BN approach to microarray data analysis is
challenging for a number of reasons. Most notably, the
Bayesian network analysis requires that we deduce the
structure of the network graph from the available data and then
use the structure to define conditional probability tables that
describe the interactions between genes. In learning the
structure, one must consider all possible network topologies
and this is a computationally intractable problem as the number
of possible graphs is super-exponential in the number of nodes;
formally, learning Bayesian networks is NP-hard, meaning that
the number of possible network structures to be tested is so
large that it is not amenable to exact computational solution.
Consequently, most approaches use heuristic search algorithms
that start with a random graph and look at perturbations on the
network structures in order to find the best network given the
data. The problem with this approach is that it is susceptible to
getting ‘trapped’ at a local maxima and so not finding the
global optimal network. As a result, BN analysis of most
biological datasets produce networks that have little
resemblance to real biological networks and, despite their
initial promise, this has severely limited their applicability.

Based on our experience with the analysis of complex data,
we realized that one could use a more intelligent approach to
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‘seeding’ the search for network structure based on integration
of prior knowledge. Recently, we demonstrated that one can
use prior best guesses as to the network structure, derived from
the biomedical literature or protein—protein interaction (PPI)
datasets, or combinations thereof, to learn biologically realistic
networks that reproduce known biological interactions and
pathways relevant to the disease state under analysis (A.
Djebbari and J. Quackenbush, manuscript submitted), an
approach that is also described by Lehner in this issue (Lehner,
2007). In our method, gene networks were constructed from the
literature using the co-occurrences method (Jenssen et al.,
2001) by defining genes as nodes and connecting them with an
edge if they are mentioned in the same article, assigning edge
weights based on the number of articles mentioning those
genes. Given a set of genes of interest, one can construct a
literature network by taking the union of edges in networks
constructed from databases including Entrez Gene and
PubMed.

PPI networks can also be used as constraints on Bayesian
Networks topology. The recently published CCSB-HI1 dataset
(http://vidal.dfci.harvard.edu/HIPaperSup) detected interacting
proteins using a high-throughput yeast two-hybrid assay (Rual
et al., 2005). While this is one of the most comprehensive
surveys of the human interactome, its relatively low coverage
(2754 edges representing binary interactions) represents
approximately 1% of the interactome; in order to explore the

B

potential benefit of using PPI as prior information for learning
Bayesian Networks, we allowed our starting ‘significant’ gene
lists to expand by including all genes in the interactome dataset
with k or fewer links using Floyd’s all-pairs shortest paths
algorithm.

We then apply this method to deducing Bayesian Networks
from gene expression data. To avoid the over-fitting problem
that arises from learning Bayesian Networks from too few
samples, one can generate many networks and perform model
averaging to find important features that are supported by the
data. To this end, we used a bootstrapping approach to estimate
the confidence in features learned. The bootstrapping method
consists of resampling the data with replacement (a non-
parametric bootstrap) (Friedman et al., 2000) to estimate the
confidence in features learned. The features considered are:
directed edges, undirected edges, order relations (one variable
is the ancestor of the other variable) and Markov relations (if
two variables are connected either way or if they are both
parents of another variable). If the feature is strongly induced
from the data, the confidence of this feature is expected to be
closer to 1 or otherwise closer to 0.

We considered the dataset presented by Golub et al. as a test
set (Golub et al., 1999), where the authors analyzed two forms
of leukemia, acute lympboblastic leukemia (ALL) and acute
Myeloblastic leukemia (AML). Using a simple between-groups
t-test, we identified a set of 40 genes that best distinguished the

\v\g\f.
Die—2)

P
-4

Fig. 5. Representations of the
networks produced by a Bayesian
Network analysis of the top 40
genes selected as distinguishing
ALL and AML in the microarray
dataset of Golub et al. (Golub et
al., 1999) for links with
confidence greater than 0.7; links
with confidence greater than 0.9
are shown in bold. Networks
represent the consensus of 200
iterations for (A) the microarray
data alone, (B) the microarray
data with constraints from
protein-protein interaction (PPI)
data, (C) microarray data with
constraints from literature
networks, and (D) microarray
data with constraints from a
combination of microarray and
PPI data.
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two disease states and applied our Bayesian Network
formalism. For each of 200 bootstrap iterations, we ran a
Bayesian Network heuristic search algorithm using the
Bayesian Network package from within the WEKA toolkit
(Witten and Frank, 2005), which has been integrated into the
MeV software package developed by our group. We used a
variety of combinations of prior network structures arising
from the literature, PPI data, and a combination of the two. For
each graph feature, we counted the number of times it occurs
for each pair of genes over the total number of iterations.
Taking the null hypothesis that the no prior and prior cases
provide the same confidence estimates for each gene pair (as
computed by taking the average for all the combinations of
algorithms and scoring schemes), we perform a two-tailed
paired #-test to find the corresponding P-value for each
comparison. The results of this analysis are shown
schematically for the four cases in Fig. 5.

In the final network combining both the literature and PPI
data, many of the genes play important biological roles
associated with the cell cycle. MCM3 is critical in S-phase cell
cycle progression, RBBP4 in chromatin remodeling and
GTF2E2 in transcription. Many of these genes are either
directly or indirectly involved in the Rb/E2F pathway. Rb and
p53 are tumor-suppressor genes than can check cell-cycle
progression and prevent cells from becoming cancerous. E2F
is a transcription factor required for the expression of proteins
involved in ANTP and DNA synthesis. In normal cells, Rb is
hypophosphorylated and complexes with E2F, blocking it from
activating transcription. In this way, inhibition of E2F activity
by Rb can block entry into the S phase. Rb is inactive when
hyperphosphorylated, however, thereby releasing E2F and the
cell cycle progresses. This over-representation of cell-cycle
genes suggests that, indeed, differences in expression of cell-
cycle-related genes are responsible for some of the observed
differences in ALL and AML phenotypes.

It must be noted that these networks are not biological
networks in the sense of metabolic pathways, signal
transduction networks or biochemical pathways. Rather, the
networks produced from a Bayesian network analysis provide
us with a framework for understanding the interactions between
genes or their encoded proteins and for building predictive
models that can be used to evaluate how an organism might
respond to perturbations in its environment. Our work
demonstrates that the use of prior information, derived from the
published literature, PPI data, or both, can improve our ability
to learn realistic networks from gene expression data. What is
most encouraging about this work is that the starting data, a
comparison of AML and ALL, was not designed to probe the
cell-cycle network, but this network emerged from the data
nonetheless. This suggests that directed experiments where a
particular network or pathway is perturbed and followed over
time may further improve the overall performance of a BN
approach. Using such an approach in an iterative manner, in
which a network is first learned, then perturbed and the
resulting data used to refine the predicted network structure,
may allow us to discover novel players in many known
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networks and to learn previously unknown networks from
DNA microarray expression profiles.

Stochastics in gene expression: the foundation of systems
biology

Recently, much of the focus in genomics has moved to
developing models of cellular systems that extend beyond the
‘parts list” provided by the genome and the types of
relationship-based models represented in Bayesian Networks.
Systems biology has focused on developing quantitative and
predictive models describing cellular systems. However, the
network models developed to date are largely deterministic,
meaning that if the right initial conditions are met and the right
interactions are represented, then the model will predict a
specific outcome. What these models ignore is the fact that
biological systems have inherently stochastic components. In
1995, McAdams and Shapiro attempted to model one of the
simplest organisms, lambda phage, and realized that stochastic
inputs to the system made reliable prediction of outcome nearly
impossible (McAdams and Shapiro, 1995).

Evidence for stochastic processes in biology has been
mounting for quite some time. There are a number of reports
indicating that protein production has a stochastic component
that gives rise to very different rates of protein synthesis in
genetically identical cells in essentially identical environments
(Blake et al., 2003; Elowitz et al., 2002; Ozbudak et al., 2002).
However, until recently there has only been a single published
report of the variability of gene expression in single cells,
which did not provide an underlying statistical model for
mRNA representation within the cell (Levsky et al., 2002).
While this may seem to be minor, it represents a significant gap
in our knowledge if we are to construct the sort of predictive
models that are the aim of systems biology.

To address this problem, we turned our attention to
understanding the stochastic nature of steady-state gene
expression. We tend to think of a tissue sample as being
homogeneous and to discuss levels of gene expression in terms
of absolute numbers of copies per cell. However, every
transcription factor has a dissociation constant (Kp) that can be
measured, which implies that the transcription factor binds and
unbinds with some fixed probability per unit time. There is a
long history of modeling such stochastic processes using
Poisson statistics, so it was a natural assumption to consider
transcription as a Poisson process. While measuring
transcription in individual cells is a challenge, we recognized
that if we looked at small numbers of cells, we might be able
to see echoes of the underlying stochastic processes in
individual cells. Sampling statistics applied to Poisson
processes tell us that the variance in gene expression levels
should decay as 1/N, where N is the number of cells sampled.

We developed an approach we refer to as ‘mesoscopic
biology’, which looks between the macroscopic and
microscopic (single cell) realms. Using quantitative RT-PCR,
and sampling variable numbers of cells, we were able to
demonstrate that steady state gene expression does, in fact,
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obey Poisson statistics (Mar et al., 2006). The beauty of this
approach is that it can provide experimental measurements
even for genes expressed at very low levels. It further suggests
that other stochastic events occurring in single cells, even
complex interactions in pathways, may reveal themselves
through the analysis of samples of mesoscopic size. In many
ways, this situation is analogous to one in statistical mechanics
and thermodynamics — the relationship between the
Maxwell-Boltzman distribution and the Ideal Gas Law. While
we understand that the Ideal Gas Law describes gas dynamics
for macroscopic samples, we know that, on a microscopic
scale, the behavior of the gas molecules themselves is described
by the Maxwell-Boltzman distribution. In a biological system,
the compromise between looking at large tissue samples, where
the stochastic events are averaged out, and single cells, where
experimental analysis is difficult, is to look at small numbers
of cells — mesoscopic samples — where one can begin to see
deviations from the average behavior. And although a first step,
we believe that this is a crucial one for developing an
understanding of the way in which biological systems operate.

Conclusions

The biological sciences are in a state of rapid development,
driven largely by the tools that have developed as byproducts
of the Human Genome Project. These new technologies are
profoundly changing the manner in which we approach a wide
range of problems and questions, and demanding that we
develop new methods that will allow us effectively to manage
the data they produce. In many ways, the true revolution
inspired by genomics has been one that is changing what was
exclusively a laboratory science into an information science.
What we have presented here is a cursory overview of some of
the ways in which we have attempted to deal with this transition
and is in no way meant to be a comprehensive review of the
field. There are, for example, many freely available software
systems for the analysis of gene expression and other genomic
data, the most notable being the BioConductor package
developed in R (Gentleman et al., 2004). While not being
exhaustive, we hope that the examples we have provided
illustrate the challenges presented by the analysis of genomic
data and some possible ways of addressing them.

We also hope that we have provided some insight into the
complexities of modeling biological systems and the
challenges inherent in the growing discipline of systems
biology. While there are many problems remaining to be
solved, the focus on developing predictive models promises to
move us toward a more secure analytical framework in which
to study processes relevant to a wide range of enquiries,
including analysis of the mechanisms underlying human
disease.

In all of this, it is important to remember that every
experiment is an attempt to understand a real biological system.
The new approaches and new technologies that have become
so widespread in the past years cannot in and of themselves
provide us with biological insight. In fact, in any large-scale

analysis, the best result we can generally hope for is the
development of new, testable hypotheses that can lead us back
to directed experiments in the laboratory. The good news is that
genomic technologies have provided us with a ‘macroscope’
that allows us to consider biological systems holistically,
examining their entire gene content in a single assay, and in so
doing has opened up new areas of investigation and provided
us with many new and exciting, testable, hypotheses.

This work was supported by grants from the National
Library of Medicine and the National Science Foundation.
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Glossary of terms

This section is designed to help readers adapt to the complex terminology associated with contemporary molecular genetics,
genomics and systems biology. Fuller descriptions of these terms are available at http://www.wikipedia.org/

AD initio prediction

Annotation

Assembly

cDNA

ChIP

Chip
ChIP-on-chip

cis-acting

Collision-induced dissociation

Connectivity

CpG islands

Edge

Enhancer

Epistasis

methods used to predict the potential genes encoded in the genome, which are trained on
datasets made of known genes, and used computationally to predict coding regions out
of genome without the aid of cDNA sequence. Although their performance is improving,
these algorithms perform very poorly on non-protein coding genes.

as applied to proteins, DNA sequences or genes. The storage of data describing these
entities (protein/gene identities, DNA motifs, gene ontology categorisation, etc.) within
a biological database. Active projects include FlyBase and WormBase. See Gene
ontology.

the process of aligning sequenced fragments of DNA into their correct positions within
the chromosome or transcript.

complementary DNA. This is DNA synthesised from a mature mRNA template by the
enzyme reverse transcriptase. cDNA is frequently used as an early part of gene cloning
procedures, since it is more robust and less subject to degradation than the mRNA itself.

chromatin immunoprecipitation assay used to determine which segments of genomic
DNA are bound to chromatin proteins, mainly including transcription factors.

see Microarray.

use of a DNA microarray to analyse the DNA generated from chromatin
immunoprecipitation experiments (see ChIP).

a molecule is described as cis-acting when it affects other genes that are physically
adjacent, on the same chromosome, or are genetically linked or in close proximity (for
mRNA expression, typically a promoter).

a mechanism by which molecules (e.g. proteins) are fragmented to form molecular ions
in the gas phase. These fragments are then analysed within a mass spectrometer to
provide mass determination.

a term from graph theory, which indicates the number of connections between nodes or
vertices in a network. Greater connectedness between nodes is generally used as a
measure of robustness of a network.

regions that show high density of ‘C followed by G’ dinucleotides and are generally
associated with promoter elements; in particular, stretches of DNA of at least 200 bp
with a C—G content of 50% and an observed CpG/expected CpG in excess of 0.6. The
cytosine residues can be methylated, generally to repress transcription, while
demethylated CpGs are a hallmark of transcription. CpG dinucleotides are under-
represented outside regulatory regions, such as promoters, because methylated C mutates
into T by deamination.

as in networks. Connects two nodes (or vertices) within a system. These concepts arise
from graph theory.

a short segment of genomic DNA that may be located remotely and that, on binding
particular proteins (frans-acting factors), increases the rate of transcription of a specific
gene or gene cluster.

a phenomenon when the properties of one gene are modified by one or more genes at
other loci. Otherwise known as a genetic interaction, but epistasis refers to the statistical
properties of the phenomenon.
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eQTL

EST

Exaptation

Exon

Gene forests

Gene interaction network

Gene ontology (GO)

Gene set enrichment analysis

Gene silencing

Genetic interaction (network)

Genome

Heritability

Heterologous hybridization

Homeotic

Hub

the combination of conventional QTL analysis with gene expression profiling, typically
using microarrays. eQTLs describe regulatory elements controlling the expression of
genes involved in specific traits.

expressed sequence tag. A short DNA sequence determined for a cloned cDNA
representing portions of an expressed gene. The sequence is generally several hundred
base pairs from one or both ends of the cloned insert.

a biological adaptation where the current function is not that which was originally
evolved. Thus, the defining (derived) function might replace or persist with the earlier,
evolved adaptation.

any region of DNA that is transcribed to the final (spliced) mRNA molecule. Exons
interleave with segments of non-coding DNA (introns) that are removed (spliced out)
during processing after transcription.

genomic regions for which RNA transcripts, produced from either DNA strand, have
been identified without gaps (non-transcribed genomic regions). Conversely, regions in
which no transcripts have ever been detected are called ‘gene deserts’.

a network of functional interactions between genes. Functional interactions can be
inferred from many different data types, including protein—protein interactions, genetic
interactions, co-expression relationships, the co-inheritance of genes across genomes and
the arrangement of genes in bacterial genomes. The interactions can be represented using
network diagrams, with lines connecting the interacting elements, and can be modelled
using differential equations.

an ontology is a controlled vocabulary of terms that have logical relationships with each
other and that are amenable to computerised manipulation. The Gene Ontology project
has devised terms in three domains: biological process, molecular function and cell
compartment. Each gene or DNA sequence can be associated with these annotation
terms from each domain, and this enables analysis of microarray data on groups of genes
based on descriptive terms so provided. See http://www.geneontology.org

a computational method that determines whether a defined set of genes, usually based on
their common involvement in a biological process, shows statistically significant
differences in transcript expression between two biological states.

the switching-off of a gene by an epigenetic mechanism at the transcriptional or post-
transcriptional levels. Includes the mechanism of RNAI.

a genetic interaction between two genes occurs when the phenotypic consequences of a
mutation in one gene are modified by the mutational status at a second locus. Genetic
interactions can be aggravating (enhancing) or alleviating (suppressing). To date, most
high-throughput studies have focussed on systematically identifying synthetic lethal or
sick (aggravating) interactions, which can then be visualised as a network of functional
interactions (edges) between genes (nodes).

a portmanteau of gene and chromosome, the entire hereditary information for an
organism that is embedded in the DNA (or, for some viruses, in RNA). Includes protein-
coding and non-coding sequences.

phenotypic variation within a population is attributable to the genetic variation between
individuals and to environmental factors. Heritability is the proportion due to genetic
variation usually expressed as a percentage.

the use of a cDNA or oligonucleotide microarray of probes designed for one species
with target cRNA/cDNAs from a different species.

the transformation of one body part to another due to mutation of specific
developmentally related genes, notably the Hox genes in animals and MADS-box genes
in plants.

as in networks. A node with high connectivity, and thus which interacts with many other
nodes in the network. A hub protein interacts with many other proteins in a cell.
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Hybridisation

Hypomorph

Imprinting

Indel

Interactome

Intron
KEGG

Metabolomics

Metagenomics

Microarray

Model species

miRNA

mRNA

ncRNA

the process of joining (annealing) two complementary single-stranded DNAs into a
single double-stranded molecule. In microarray analysis, the target RNA/DNA from the
subject under investigation is denatured and hybridised to probes that are immobilised on
a solid phase (i.e. glass microscope slide).

in genetics, a loss-of-function mutation in a gene, but which shows only a partial
reduction in the activity it influences rather than a complete loss (cf. hypermorph,
antimorph, neomorph, etc).

a phenomenon where two inherited copies of a gene are regulated in opposite ways, one
being expressed and the other being repressed.

insertion and deletion of DNA, referring to two types of genetic mutation. To be
distinguished from a ‘point mutation’, which refers to the substitution of a single base.

a more or less comprehensive set of interactions between elements within cells. Usually
applied to genes or proteins as defined by transcriptomic, proteomic or protein—protein
interaction data.

see Exon.

The Kyoto Encyclopedia of Genes and Genomes is a database of metabolic and other
pathways collected from a variety of organisms. See http://www.genome.jp/kegg

the systematic qualitative and quantitative analysis of small chemical metabolite profiles.
The metabolome represents the collection of metabolites within a biological sample.

the application of genomic techniques to characterise complex communities of microbial
organisms obtained directly from environmental samples. Typically, genomic tags are
sequence characterised as markers of each species to inform on the range and abundance
of species in the community.

an arrayed set of probes for detecting molecularly specific analytes or targets. Typically,
the probes are composed of DNA segments that are immobilised onto the solid surface,
each of which can hybridise with a specific DNA present in the target preparation. DNA
microarrays are used for profiling of gene transcripts.

a species used to study particular biological phenomena, the outcome offering insights
into the workings of other species. Usually, the selection is based on experimental
tractability, particularly ease of genetic manipulation. For the geneticist, it is an
organism with inbred lines where sibs will be >98% identical (i.e. Drosophila,
Caenorhabditis elegans and mice). For genomic science, it refers to a species for which
the genomic DNA has been sequenced.

a category of novel, very short, non-coding RNAs, generated by the cleavage of larger
precursors (pri-miRNA). These short RNAs are included in the RNA-induced silencing
complex (RISC) and pair to the 3’ ends of target RNA, blocking its translation into
proteins (in animals) or promoting RNA cleavage and degradation (in plants).

a protein-coding mRNA containing a protein-coding region (CDS), preceded by a 5’ and
followed by a 3’ untranslated region (5’ UTR and 3’ UTR). The UTRs contain
regulatory elements. A full-length cDNA contains the complete sequence of the original
mRNA, including both UTRs. However, it is often difficult to assign the
starting—termination positions for protein synthesis unambiguously. A cDNA containing
the entire CDS is often considered acceptable for bioinformatic and experimental studies
requiring full-length cDNAs.

non-coding RNA is any RNA molecule with no obvious protein-coding potential for at
least 80 or 100 amino acids, as determined by scanning full-length cDNA sequences. It
includes ribosomal (rRNA) and transfer RNAs (tRNA) and is now known to include
various sub-classes of RNA, including snoRNA, siRNA and piRNA. Just like the coding
mRNAs, a large proportion of ncRNAs are transcribed by RNA polymerase II and are
large transcripts. A description of the many forms of ncRNA can be found at
http://en.wikipedia.org/wiki/Non-coding_RNA.
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Node
PCR

piRNA

PMF

Polyadenylation

Post-source decay

Post-translational modification

Principal component analysis (PCA)

Promoter

Proteome

Quantitative trait

qPCR

QTL

RISC

RNAi

RT-PCR

siRNA

as in networks. Objects linked by edges to create a network.

polymerase chain reaction. A molecular biology technique for replicating DNA in vitro.
The DNA is thus amplified, sometimes from very small amounts. PCR can be adapted to
perform a wide variety of genetic manipulations.

Piwi-interacting RNA. A class of RNA molecules (29-30 nt long) that complex with
Piwi proteins (a class of the Argonaute family of proteins) and are involved in
transcriptional gene silencing.

peptide mass fingerprinting. An analytical technique for protein identification in which a
protein is fragmented using proteases. The resulting peptides are analysed by mass
spectrometry and these masses compared against a database of predicted or measured
masses to generate a protein identity.

the covalent addition of multiple A bases to the 3’ tail of an mRNA molecule. This
occurs during the processing of transcripts to form the mature, spliced molecule and is
important for regulation of turnover, trafficking and translation.

in mass spectrometry. The fragmentation of precursor molecular ions as they accelerate
away from the ionisation source of the mass spectrometer. All precursor ions leaving the
ion source have approximately the same kinetic energy, but fragmentation results in
smaller product ions that can be distinguished from precursor ions using a ‘reflectron’ by
virtue of their lower kinetic energies.

the chemical modification of a protein after synthesis through translation. Some
modifications, notably phosphorylation, affect the properties of the protein, offering a
means of regulating function.

a technique for simplifying complex, multi-dimensional datasets to a reduced number of
dimensions, the principal components. This procedure retains those characteristics of the
data that relate to its variance.

a regulatory DNA sequence, generally lying upstream of an expressed gene, which in
concert with other often distant regulatory elements directs the transcription of a given
gene.

the entire protein complement of an organism, tissue or cell culture at a given time.

inheritance of a phenotypic property or characteristic that varies continuously between
extreme states and can be attributed to interactions between multiple genes and their
environment.

quantitative real-time PCR, sometimes called real-time PCR. A more quantitative form
of RT-PCR in which the quantity of amplified product is estimated after each round of
amplification.

quantitative trait loci. A region of DNA that contains those genes contributing to the trait
under study.

RNA-induced silencing complex. A protein complex that mediates the double-stranded
RNA-induced destruction of homologous mRNA.

RNA interference or RNA-mediated interference. The process by which double-
stranded RNA triggers the destruction of homologous mRNA in eukaryotic cells by the
RISC.

reverse transcription—polymerase chain reaction. A technique for amplifying a defined
piece of RNA that has been converted to its complementary DNA form by the enzyme
reverse transcriptase. See qPCR.

small interfering RNA, or silencing RNA. A class of short (20-25 nt), double-stranded
RNA molecules. It is involved in the RNA interference pathway, which alters RNA
stability and thus affects RNA concentration and thereby suppresses the normal
expression of specific genes. Widely used in biomedical research to ablate specific
genes.
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snoRNA

SNP

SSH

Structural RNAs

Systems biology

TATA-boxes

trans-acting

Transcript

Transcriptome

Transgene

Transinduction

Transposon

Transvection

TUs

UTR

small nucleolar RNA. A sub-class of RNA molecules involved in guiding chemical
modification of ribosomal RNA and other RNA genes as part of the regulation of gene
expression.

single nucleotide polymorphism. A single base-pair mutation at a specific locus, usually
consisting of two alleles. Because SNPs are conserved over evolution, they are
frequently used in QTL analysis and in association studies in place of microsatellites,
and in genetic fingerprinting analyses.

suppressive subtractive hybridisation. A powerful protocol for enriching cDNA libraries
for genes that differ in representation between two or more conditions. It combines
normalisation and subtraction in a single procedure and allows the detection of low-
abundance, differentially expressed transcripts, such as those involved in signalling and
signal transduction.

a class of non-coding RNA, long known to have a structural role (for instance, the
ribosomal RNAs), transcribed by RNA polymerase I or III.

treatment of biological entities as systems composed of defined elements interacting in
defined ways to enable the observed function and behaviour of that system. The
properties of the systems are embedded in a quantitative model that guides further tests
of systems behaviour.

sequences in promoter regions constituted by TATAAA, or similar variants, which were
considered the hallmark of Promoters. Recent data show that they are present only in the
minority of promoters, where they direct transcription at a single well-defined location
some 30 bp downstream of this element.

a factor or gene that acts on another unlinked gene, a gene on a separate chromosome or
genetically unlinked usually through some diffusible protein product (for mRNA
expression, typically a transcription factor).

an RNA product produced by the action of RNA polymerase reading the sequence of
bases in the genomic DNA. Originally limited to protein-coding sequences with flanking
UTRs but now known to include large numbers of products that do not code for a
protein product.

the full set of mRNA molecules (transcripts) produced by the system under observation.
Whilst the genome is fixed for a given organism, the transcriptome varies with context
(i.e. tissue source, ontogeny, external conditions or experimental treatment).

a gene or genetic material that has been transferred between species or between
organisms using one of several genetic engineering techniques.

generation of transcripts from intergenic regions. At least some such products do not
relate to a definable promoter or transcriptional start site.

sequences of DNA able to move to new positions within the genome of a single cell.
This event might cause mutation at the site of insertion. Also called ‘mobile genetic
elements’ or ‘jumping genes’.

an epigenetic phenomenon arising from the interaction between one allele and the
corresponding allele on the homologous chromosome, leading to gene regulation.

transcriptional units. Used to group all of the overlapping RNA transcripts that are
transcribed from the same genomic strand and share exonic sequences.

untranslated region. Regions of the mRNA that lie at either the 3’ or 5 flanking ends of
the molecule (i.e. 3" UTR and 5" UTR). They bracket the protein-coding region and
contain signals and binding sites that are important for the regulation of both protein
translation and RNA degradation.
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