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CORRECTION

Correction: Evidence of trapline foraging in honeybees

Alexis Buatois and Mathieu Lihoreau

There were some errors in J. Exp. Biol. (2016) 219, 2426-2429 (doi:10.1242/jeb.143214).

In Materials and Methods, the maximum distance between flowers was incorrect. This should read: “The same configuration was used
at a small spatial scale (distance between flowers: 1.48-4.19 m) and at a larger spatial scale (distance between flowers: 14.8-41.9 m).’.
The coordinates of each flower provided in the supplementary information (and from which these distances can be calculated) were
correct.

In Results and Discussion, the percentage of honey bees was incorrectly given as 61%. The sentence should have read: ‘This sequence was
increasingly used over time (Fig. 2C), and the majority of honeybees (56%) selected an optimal sequence (Fig. 1)..

Additionally, in Fig.1A, last panel, the arrows incorrectly indicate a route H-F2-F3-F1-F4-H. This should be H-F3-F2-F1-F4-H; the
sequence is correct in the supplementary information. Fig. 1B, first panel, showed an incorrect number (and percentage) of honey bees. This
should be N=1 (12.5%). The corrected figure appears below.

These mistakes do not affect the results and conclusion of the paper. Both the online full-text and PDF versions of the article have been
updated and the authors apologise to the readers for any inconvenience caused.
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Fig. 1 (corrected). Arrays of flowers and geometry of favourite sequences. Data are shown for (A) experiment 1, small array of flowers in the laboratory;
(B) experiment 2, small array of flowers in the field, and (C) experiment 3, large array of flowers in the field. H is the hive, FO the pre-training flower, F1-F4 the
experimental flowers, and posters 1—4 the landmarks. Numbers in parentheses are Cartesian coordinates (m). Arrows indicate the direction in which the
honeybee moved. N is the number of honeybees that have selected the sequence. A bee moving between nearest-neighbour flowers (F4—F1-F2—F3) would fly
11.6% longer than a bee using an optimal sequence (F1-F2—F3—-F4 or F4-F3-F2-F1).
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Fig. 1 (original). Arrays of flowers and geometry of favourite sequences. Data are shown for (A) experiment 1, small array of flowers in the laboratory;
(B) experiment 2, small array of flowers in the field, and (C) experiment 3, large array of flowers in the field. H is the hive, FO the pre-training flower, F1-F4 the
experimental flowers, and posters 1—4 the landmarks. Numbers in parentheses are Cartesian coordinates (m). Arrows indicate the direction in which the
honeybee moved. N is the number of honeybees that have selected the sequence. A bee moving between nearest-neighbour flowers (F4—F1-F2—F3) would fly
11.6% longer than a bee using an optimal sequence (F1-F2—F3—-F4 or F4-F3-F2-F1).
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SHORT COMMUNICATION

Evidence of trapline foraging in honeybees

Alexis Buatois and Mathieu Lihoreau*

ABSTRACT

Central-place foragers exploiting floral resources often use multi-
destination routes (traplines) to maximise their foraging efficiency.
Recent studies on bumblebees have showed how solitary foragers
can learn traplines, minimising travel costs between multiple
replenishing feeding locations. Here we demonstrate a similar
routing strategy in the honeybee (Apis mellifera), a major pollinator
known to recruit nestmates to discovered food resources. Individual
honeybees trained to collect sucrose solution from four artificial
flowers arranged within 10 m of the hive location developed
repeatable visitation sequences both in the laboratory and in the
field. A 10-fold increase of between-flower distances considerably
intensified this routing behaviour, with bees establishing more stable
and more efficient routes at larger spatial scales. In these advanced
social insects, trapline foraging may complement cooperative
foraging for exploiting food resources near the hive (where dance
recruitment is not used) or when resources are not large enough to
sustain multiple foragers at once.

KEY WORDS: Apis mellifera, Honey bee, Navigation, Spatial
cognition, Route learning

INTRODUCTION

Pollinators such as bees face complex foraging problems as they
exploit ephemeral floral resources that are scattered in space and
vary in quality. Manipulative experiments in bumblebees foraging
on artificial flowers show how individual foragers can learn stable,
repeatable traplines, minimising travel distances between feeding
locations (Lihoreau et al., 2010, 2012; Ohashi et al., 2007), an
optimisation task akin to the well-known travelling salesman
problem in network theory (Cramer and Gallistel, 1997).
Mathematical models indicate that this routing behaviour is
particularly efficient for foragers exploiting patchily distributed
resources from a central place, thus suggesting that traplining is
taxonomically widespread among pollinators (Ohashi and
Thomson, 2005; Possingham, 1989). Better understanding of the
complex spatial strategies of pollinators is crucial to assessing
patterns of pollen flow and their consequences on plant populations
and communities (Fortuna et al., 2008).

Despite intensive research on the honeybee, a key pollinator
worldwide and a model species in insect navigation, this question
has never been explored. In contrast to bumblebees, honeybee
foragers communicate using a symbolic language (the waggle
dance) that conveys information about the location of resources
discovered more than ca. 100 m away from the hive (von Frisch,
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1967; Riley et al., 2005). Therefore, most studies on honeybee
navigation have focused on how foragers learn to fly back and forth
between the hive and one (or two) distant feeding locations and how
they communicate this information (Collett et al., 2013). However,
little is known about how foragers move between different feeding
locations. In nature, honeybees may visit hundreds of flowers per
foraging trip (von Frisch, 1967), thereby creating ample
opportunities for foragers to simultaneously exploit multiple
flower patches or plants. Early field observations suggest that
individual honeybees confine their foraging activities to relatively
stable groups of plants over many successive days (Ribbands,
1949). More recent studies indicate that foragers can learn flight
sequences between multiple visual landmarks to resolve mazes
(Collett et al., 1993; Zhang et al., 1996) and discriminate the
direction of different feeding locations from a single starting point
or hub (Najera et al., 2012).

Here we examined the ability of honeybees to establish traplines.
We observed individually marked foragers exploiting four artificial
flowers over 30 consecutive foraging bouts. We compared their
routing performances in the laboratory and in the field at different
spatial scales to identify how environmental factors affect this
behaviour.

MATERIALS AND METHODS

Study sites

All experiments were conducted in spring 2015. Laboratory
observations were made in a 7x5m flight room (Fig. 1A)
equipped with 12 wide-spectrum LED lights (6500K). A poster
uniquely characterised by a bicolored pattern was placed on each
wall to provide 2D landmarks (Fig. S1). Field observations were
made in a 300x150 m flat ploughed land free of natural flowers, on
sunny days with clear sky (Fig. S2).

Bees and artificial flowers

We used a small colony of Apis mellifera (Linnaeus 1758) (ca. 2000
workers) in an observation hive. The hive entrance was equipped
with a transparent tube fitted with shutters to control honeybee
traffic. The colony was fed with ad libitum defrosted pollen directly
into the hive. Workers collected sucrose solution (40% w/w) from
artificial flowers made of a blue landing platform sitting on a
transparent cylinder attached to a 50 cm stand (Fig. S3). For large-
scale field observations, a wi-fi camera (D-Link) was positioned
above each flower (Fig. S3C). Live images of all flowers were
displayed on a single computer screen.

Honeybees were tested in a four-flower array (24 possible
sequences to visit all flowers once, starting and ending at the hive).
The spatial configuration of flowers maximised the discrepancy
between the two optimal sequences minimising path length to visit
all flowers and the sequence linking unvisited nearest-neighbour
flowers (Fig. 1). The same configuration was used at a small spatial
scale (distance between flowers: 1.48—4.19 m) and at a larger spatial
scale (distance between flowers: 14.8—41.9 m). In both cases,
flowers were located less than 100 m away from the hive, thus
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Fig. 1. Arrays of flowers and geometry of favourite sequences. Data are shown for (A) experiment 1, small array of flowers in the laboratory; (B) experiment 2,
small array of flowers in the field, and (C) experiment 3, large array of flowers in the field. H is the hive, FO the pre-training flower, F1-F4 the experimental flowers,
and posters 1-4 the landmarks. Numbers in parentheses are Cartesian coordinates (m). Arrows indicate the direction in which the honeybee moved. N is the

number of honeybees that have selected the sequence. A bee moving between nearest-neighbour flowers (F4-F 1-F2-F3) would fly 11.6% longer than a bee using

an optimal sequence (F1-F2-F3-F4 or F4-F3-F2-F1).

preventing dance communication (von Frisch, 1967). Because
A. mellifera workers detect visual targets from a background
subtending a visual angle of ~5 deg (Giurfa et al., 1996), we assume
that honeybees could see our 50 cm flowers at a maximum distance
of 5.7 m. Thus honeybees could detect all flowers from any flower
location in the small array but not in the large array.

Procedure

Honeybees were pre-trained on a flower providing ad [libitum
sucrose solution (Fig. S3A) and paint-marked for individual
identification (von Frisch, 1967). Once a honeybee made regular
foraging bouts (foraging trip starting and ending at the hive), its
nectar crop capacity was measured (range: 32—54 ul, N=22). The
honeybee was then tested for 30 successive bouts (ca. 6 h) with all
experimental flowers in their final position (Fig. 1). At each
foraging bout, each flower provided one-fourth of the honeybee’s
crop capacity. Sequences of flower visits were recorded, detailing
the time of arrival to and departure from each flower. Between
testing honeybees, flowers were cleaned with ethanol (70% w/w) to
remove chemical cues that could influence the next foragers (Giurfa
and Nuiez, 1992). The same procedure was used in the small flower

array in the laboratory (experiment 1, N=10) and in the field
(experiment 2, N=8), and in the large array in the field (experiment
3, N=4). The lower sample size used in experiment 3 reflects the
increased difficulty of pre-training bees and keeping them motivated
to forage on artificial flowers at greater distances from the hive.

Sequence analyses

Foraging performances were analysed using generalised linear
mixed models (GLMM) on bins of 10 foraging bouts (random
factor: bouts within individual) in SPSS. Route repeatability was
examined using determinism (DET), a metric for detecting
repeating sequences in traplining data (Ayers et al., 2015). DET
varies between 0 (the honeybee never repeats the same sequence)
and 1 (the honeybee always repeats the same sequence). For each
honeybee, a DET was calculated for bins of 10 bouts on sequences
of four-flower visits. Observed DET were compared with 1500
simulated DET of randomly generated sequences, either including
or excluding revisits (the R code to generate random sequences is
available on request from the corresponding author). For analyses
of route frequency, four-flower sequences (excluding revisits) were
used (Fig. S4). Observed frequencies were compared with random
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using binomial test with a probability of 1/24 (Lihoreau et al., 2010).
Sequences repeated at least four times over the 30 bouts were used
more often than expected by chance (binomial test, P<0.05).

RESULTS AND DISCUSSION

First we tested the influence of environmental cues on route learning
by comparing the foraging sequences of honeybees in the small
array of flowers in the laboratory and in the field (experiment 1
versus experiment 2). In both settings, honeybees improved
foraging performance as they gained experience. Honeybees made
shorter foraging bouts (Gaussian GLMM, bout: £ 45=7.08,
P=0.011; experiment: F45=2.27, P=0.114; boutxexperiment:
F, 44=1.87, P=0.165), visited more flowers per bout (gamma
GLMM, bout: F54g=13.11, P<0.001; experiment: F43=0.63,
P=0.431; boutsxexperiment: F3,=2.01, P=0.145) and decreased
their frequency of immediate revisits to flowers (gamma GLMM,
bout: F45=42.59, P<0.001; experiment: F43=9.31, P=0.004;
boutsxexperiment: /5 45=1.07, P=0.351; Fig. 2A) as the number of
foraging bouts completed increased. Honeybees also used
increasingly repeatable flower visitation sequences through time,
reaching statistically indistinguishable, non-random DET in the last
10 bouts in the laboratory and in the field (Fig. 2B). All individuals
used a favourite sequence (the most common four-flower visitation
sequence excluding revisits) in 31.3+6.2% (mean+95%CI, N=18
honeybees) of their foraging bouts. This sequence was increasingly
used over time (Fig. 2C), and the majority of honeybees (56%)
selected an optimal sequence (Fig. 1). Only four individuals (22%)
had stabilised the sequence (used more than five times in a row) by
the end of the 30 bouts (Fig. S4), indicating that route fidelity is
imperfect when foraging in close feeding locations, a situation
replicating within-patch foraging. The similarity of the foraging
performances of honeybees in the laboratory and in the field
indicates that natural visual cues (sun, polarised light) are not
essential for the establishment of a route in these insects.

Next we tested the influence of spatial scale on this routing
behaviour by comparing the foraging sequences of honeybees in the
small and large arrays of flowers in the field (experiment 2 versus
experiment 3). When tested at larger spatial scales, honeybees also
considerably improved foraging performance with experience by
reducing the duration of their foraging bouts (Gaussian GLMM,
bout: F530=15.51, P<0.001; experiment: F;3o=1.4, P=0.263;
experimentxbout: F;5,=0.12, P=0.89), visiting more flowers per
bout (gamma GLMM, bout: F,3,=17.09, P<0.001; experiment:
Fy50=2.25, P=0.144; experimentxbout: F,3,=6.13, P=0.006)
and making less immediate revisits to flowers (gamma GLMM,

bout: F,30=13.92, P<0.001; experiment: F3,=2.53, P=0.123;
experimentxbout: F, 30=0.24, P=0.787; Fig. 2A). However, route
following was considerably more pronounced in the large array than
in the small array. The DET was two times higher in the last 10
foraging bouts (Fig. 2B), honeybees used their favourite sequence
twice as often (Fig. 2B) and each individual selected an optimal
favourite sequence that they stabilised (Fig. 2D, Fig. S4). Therefore,
honeybees show much higher levels of route fidelity between distant
feeding locations, a situation replicating between-patch foraging.

Historically, research on honeybee navigation has focused on the
ability of foragers to learn routes between a few important locations,
such as the hive and a feeder (Collett et al., 2013; von Frisch, 1967).
Using arrays of feeders, we show that honeybees can learn more
complex foraging circuits integrating at least five different locations.
Although we used relatively low sample sizes, all foragers tested
behaved in a similar way, indicating that this routing behaviour is
not specific to only one individual.

Route following by honeybees meets several key features of
trapline foraging previously described in bumblebees and some
other nectar-feeding insects, birds and mammals (Janzen, 1971,
Lihoreau et al., 2010, 2012; Ohashi et al., 2007; Tello-Ramos et al.,
2015): (1) honeybees used flower visitation sequences that became
increasingly similar with training, ultimately stabilising into a single
route (Lihoreau et al., 2012); (2) route establishment was
accompanied by a reduction of revisits to empty flowers (Ohashi
et al., 2007) and overall travel distances (Lihoreau et al., 2010); and
(3) route optimisation was more pronounced at larger spatial scales
(Lihoreau et al., 2012). Presumably, the energetic costs of flying
long (suboptimal) routes in the large-scale array increased the
investment of foragers in route learning. However, it is also possible
that route learning is facilitated when foragers navigate between
discrete locations further apart. Future experiments manipulating
the travel cost of visiting all flowers while keeping the distance
between neighbour flowers constant are needed to disentangle these
two hypotheses.

The development and validation of an experimental approach for
studying trapline foraging by honeybees holds considerable promise
for exploring the full complexity of spatial cognition in bees and
addressing the major unresolved question of how features of the
environment are memorised in their miniature brains (Collett et al.,
2013; Degen et al., 2015). Simulation models already provide some
empirically testable predictions. For instance, it has been suggested
that trapline development can emerge using a simple route-based
guidance system (a suite of vector flights joining different locations)
supported by path integration and visual memories of landmarks,

A B C
14 = Expt 1 (N=10 bees) 1.2 Random with revisits (N=1500 simulations) >20
12{ = =Expt 2 (N=8 bees) 1 Random without revisits (N=1500 simulations)| & 181
,% = = = Expt 3 (N=4 bees) % 16
=101 0.8 314
u‘: 81 =
5 0.6 ©
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Fig. 2. Foraging performance. (A) Mean frequency of immediate revisits to flowers, (B) mean determinism (DET) value (sequence repeatability) and (C) mean
cumulative frequency of favourite sequence (the most common four-flower visitation sequence, excluding revisits, used by each bee). Means are given with 95%
Cl. N is the number of replicates. Different lowercase letters next to curves indicate significant pairwise differences between experiments (two-tailed pairwise
Wilcoxon tests with Bonferroni correction, P<0.017) for the last bin of 10 bouts (A,B) or the last bout (C).
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without the necessity of learning metric relationships between all
main locations (Lihoreau et al., 2012; Reynolds et al., 2013).
Learning of route segments and gradual rearrangement of their
utilisation order allows for a dynamic optimisation of flight paths
and finding of novel solutions in responses to environmental
perturbations, such as the addition or removal of resources
(Lihoreau et al., 2010).

Growing evidence shows that honeybees flexibly use private and
social information in a context-dependent manner when foraging
(Griiter and Leadbeater, 2014). Our study indicates that private
information is sufficient to support complex spatial strategies in
these insects. Trapline foraging may efficiently complement
cooperative foraging to exploit resources in the vicinity of the
hive (where dance recruitment does not occur) or in environments in
which resources are less clumped or not large enough to sustain
multiple foragers at once (early or late in the season). In contrast to
dance communication (Dornhaus and Chittka, 1999), the ability to
rely on individual memory to search and exploit foods is observed in
a large diversity of bee species (Janzen, 1971; Lihoreau et al., 2010,
2012; Ohashi et al., 2007), including the most socially advanced,
suggesting that trapline foraging is ancestrally shared in this insect

group.
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Poster 1 Poster 2

Poster 3 Poster 4

Fig S1. Appearance of the geometric-patterned posters used in the lab
(experiment 1). Each poster (dimension AQ) was positioned on a different wall of the

flight room, providing 2D visual landmarks to bees (see precise locations in Fig. 1A).
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(A) Schematic view of the experimental field

Vi e

¥ A
Y Qﬁ\‘\

large array of flowers

L
L R
s ¢
Fq4 FO

Fig S2: Experimental field. Observations were conducted on a flat ploughed land
at the INRA Domaine Langlade (France, 43°30'10.5"N 1°32'20.1"E). (A). The 300 x
150 m experimental field (delimited in red) was surrounded by bushes, treelines,

paths and roads, creating a visual panorama that could be used by bees for

navigation. The location of the hive is indicated by the white square. The pre-training

flower (FO) and the experimental flowers (F1-F4) are showed for the large array of

flower (experiment 3). The black arrow indicates north. (B) Panoramic view of the

experimental field (photograph by AB).
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(B} Experimental flower (small array)  (C) Experimental flower (large array)

Wil camera J
§ -

Precise volume of
sucrose solution

Precise volume of
sucrose solution

Fig S3: Design of the artificial flowers. Flowers consisted of a blue plastic landing
platform (diameter = 6¢cm) sitting on a transparent plastic cylinder (diameter min = 5.5
cm). Each flower was hold 30 cm above ground by a clamp attached to a 50 cm
retort stand. A yellow mark in the middle of the landing platform indicated the location
of the sucrose reward. (A) For pre-training, a small petri dish (diameter = 6 cm,
volume = 110 ml) filled with sucrose solution was placed on the landing platform to
provide bees with ad libitum reward. (B) For testing bees in the small spatial scale
array of flowers (experiments 1 and 2), a precise volume of sucrose reward (min = 5
puL, max= 15 ul) was added by the experimenter using an electronic dispenser
(HandyStep electronic). (C) For testing bees in the larger spatial array, a wi-fi camera
(D-Link DCS-2330L) was placed 20 cm above each flower (50 cm above ground) to
visualise the landing platform on a computer screen. The cameras and the computer

were powered with a portable generator (Mechafer).
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(A) Experiment 1: small array in the lab

Bee 1 Bee2 Bee3 Bee4d Bee 5 Bee 6 Bee 7 Bee 8 Bee9 Beel0
Boutl 41 14 341 41 4312 14 41 143 41 41
Bout2 41 14 41 41 14 41 14 41 4
Bouts [EEEDGIZSN 14 143 41 143 14

Boutd 143 | 1234 143 143 1432 123
Bouts 123 | 1432 [EEEIM 432
Bout | 1432 1234
Bout7 412 123
Bout8 1234 12
Bout9 | 1234 12
Boutl0 (041280 123
Boutll 234
Bout12 231
Bout13 | 1234

Bout14

321

123

Bout15 2314
Bout16 231
Boutl7 | 2314 23
Bout18

Bout19

Bout20

Bout21

(B) Experiment 2: small array in the field

Bee1ll Beel2 Beel3 Beel4 Beel5 Beel6 Beel7 Beel8
Boutl 131 134 3241 1 1432

Bout2 2314 134 23 [ /12
Bout3 413 432 132 | 1432 324 | 1432

Bout4 142 321

Bouts 123 12 231 | 1234 | 4213
Bout6 321 | 3241 241 2314 2314
Bout7 123 123 3124

Bouts 132 4 2314

Bouty 321 13

Boutl0 132 4

Boutll | 1234
Bout12 132 132 4231
Bout13 132
Bout14 321 321

Boutl5 234 3241 1234
Boutle 314 123 412
Boutl7 134

Bout18 324 1234
Bout19 1234
Bout20 1234
Bout21

(C) Experiment 3: large array in the field

Boutl
Bout2
Bout3
Bout4
Bout5
Bout6
Bout7
Bout8
Bout9
Bout10
Boutll
Bout12
Bout13
Bout14
Bout1l5
Bout16
Boutl7
Bout18
Bout19
Bout20
Bout21

Bee 19
123
143
123
21
132
123
132
123
123

1234
132
124
13
1234
1234
1234
1234
1234

Bee 20 Bee 21 Bee 22
1

324
321
234

12
124
134
142
321
123

1234
1234

1234
132
123

12

1234
123
1234

1234

1234 1234
1234 123
1234 1234

Bout22
Bout23 | 3241 321
Bout24 1234

Bout25
Bout26

Bout22 = 1234 132
Bout23 3124 1234
Bout24 2314 123 1234 3124 23
Bout25 1234

Bout26

Bout22| 1234
Bout23| 1234
Bout24| 1234
Bout25/ 1234
Bout26| 1234

3142 1234

Bout27 14 2314 1234 2134 1234 1234 2314 Bout27 Bout27| 1234
Bout2s [4I28M 1234 1234 1234 1234 2314 Bout28 | 1234 324 | 1234 Bout28| 1234
Bout29 1234 1234 1234 1234 Bout29 | 1432 1234 Bout29| 1234

Bout30 | 1234 1234 1234 1234 23 Bout30 [11234 1234 Bout30| 1234

Fig. S4: Four-flower visitation sequences (excluding revisits) for each bee in experiments 1-3. Numbers (1-4) in tables refer
to unique flowers (see details in Fig. 1), and colour codes refer to a unique flower sequence. Incomplete sequences (not included in
the analyses of sequence repeatability) are in white. Sequences in columns are sorted in chronological order (from foraging bout 1

to foraging bout 30).
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