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The private life of echidnas: using accelerometry and GPS to
examine field biomechanics and assess the ecological impact of a
widespread, semi-fossorial monotreme
Christofer J. Clemente1,2,*, Christine E. Cooper3,4, Philip C. Withers3,4, Craig Freakley5, Surya Singh5 and
Philip Terrill5

ABSTRACT
The short-beaked echidna (Tachyglossus aculeatus) is a monotreme
and therefore provides a unique combination of phylogenetic
history, morphological differentiation and ecological specialisation
for a mammal. The echidna has a unique appendicular skeleton, a
highly specialised myrmecophagous lifestyle and a mode of
locomotion that is neither typically mammalian nor reptilian, but
has aspects of both lineages. We therefore were interested in
the interactions of locomotor biomechanics, ecology and movements
for wild, free-living short-beaked echidnas. To assess locomotion in
its complex natural environment, we attached both GPS and
accelerometer loggers to the back of echidnas in both spring and
summer. We found that the locomotor biomechanics of echidnas is
unique, with lower stride length and stride frequency than reported for
similar-sized mammals. Speed modulation is primarily accomplished
through changes in stride frequency, with a mean of 1.39 Hz and a
maximum of 2.31 Hz. Daily activity period was linked to ambient air
temperature, which restricted daytime activity during the hotter
summer months. Echidnas had longer activity periods and longer
digging bouts in spring compared with summer. In summer, echidnas
had higher walking speeds than in spring, perhaps because of the
shorter time suitable for activity. Echidnas spent, on average, 12% of
their time digging, which indicates their potential to excavate up to
204 m3 of soil a year. This information highlights the important
contribution towards ecosystem health, via bioturbation, of this
widespread Australian monotreme.

KEY WORDS: Tachyglossus aculeatus, GPS, Digging, Stride,
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INTRODUCTION
Echidnas are members of the family Tachyglossidae, a group of
spiny, egg-laying mammals that inhabit Australia and New Guinea.
The four extant species of echidna, together with the platypus, are
the only surviving members of the order Monotremata, which
diverged from the therian mammals (placentals and marsupials)
around 166 million years ago (Bininda-Emonds et al., 2007). The

biology of echidnas is therefore of particular interest, as
representatives of this ancient mammalian lineage. The short-
beaked echidna (Tachyglossus aculeatus) is the most-studied
monotreme, because of its wide distribution throughout most
Australian terrestrial environments. It is a medium-sized mammal
(2–5 kg) covered on its back and sides with fur and stout spines
(Augee et al., 2006). Its head is relatively small given its stocky
body, and tapers to a long, hairless, cylindrical snout, which it uses
to probe the ground in search of the ants and termites that comprise
the greatest proportion of its diet (Griffiths, 1978).

The appendicular skeleton of monotremes differs considerably
from that of therian mammals, with the retention of some
ancestral reptilian characteristics (Jones, 1923). The combination
of plesiomorphic and adaptive (apomorphic) characteristics
influences the limb morphology of short-beaked echidnas,
reflecting both their evolutionary history and modern digging
habit. The monotreme coracoid process has a reptilian structure –
it is large and fixes the shoulder to the axial skeleton by running
from the shoulder joint to the sternum, compared with the small
coracoid process on the scapula of therian mammals that does not
reach the sternum. The pelvis retains epipubic bones (in common
with marsupials, but lost in placental mammals). The limbs are
short and stout and both the femur and humerus project
horizontally, resulting in a sprawling but narrow posture that is
well suited to excavating ants and termites (Nicol, 2015). The
hind limbs are longer than the forelimbs and the tibia and fibula
are rotated posteriorly so that the hind feet turn backwards
(Griffiths, 1989).

The unusual morphology of the monotreme appendicular skeleton
means that their biomechanics of locomotion are of particular
interest. However, there are relatively few biomechanical studies of
monotremes. Echidnas have a characteristic rolling gait, during which
the trunk rolls and yaws, and there is no lateral undulation, as observed
for reptiles (Nicol, 2015). Cineradiographic studies of limb bone
kinematics for the short-beaked echidna (Jenkins, 1970, 1971) noted
that the limb movements did not reflect the upright posture typically
reported for cursorial mammals (Gray, 1944), nor the sprawling
posture of lizards (Clemente et al., 2013), but rather was an
intermediate locomotor mode between these groups. The closely
related long-beaked echidna (Zaglossus bruijni; Gambaryan and
Kuznetsov, 2013) has a similar gait as the short-beaked echidna,
somewhere between slow/moderate, single-foot/lateral-couplets in
terms of Hildebrand’s nomenclature (Hildebrand, 1965, 1966, 1967,
1968) or a slow pace-like walk in terms of Sukhanov (1967, 1974),
making it unusual for a mammal. Although echidnas use dynamic
rather than static equilibrium when moving, they do not run and
always have at least two points of contact with the ground, resulting in
low maximum speeds of about 2–3 km h−1 (0.5–0.8 m s−1; Nicol,Received 1 June 2016; Accepted 5 August 2016
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2015). The energetics of walking by the short-beaked echidna
(Edmeades and Baudinette, 1975) indicate a similar rate of increase in
energy expenditure with speed as for other mammals (Taylor et al.,
1974), but a lowerabsolute cost, probablyas a result of its lower resting
oxygen consumption. These findings for captive echidnas measured
in the laboratory suggest that the locomotory mode of echidnas is
distinct, and represents a unique combination of phylogenetic history
and ecological specialisation to a semi-fossorial habit.
The short-beaked echidna forages by digging into ant and termite

mounds, or underneath fallen wood and tree bases (Nicol, 2015).
Diggings in ant mounds have been described as small round conical
holes 25–80 mm deep made by the thrust of the snout, larger holes
with a broader working face (conical in the first part and ending in a
snout hole) and diggings in looser soil as shallow or deep excavations
or extensive ‘bull-dozing’ tracts; they dig deep well-formed burrows
with a flat floor and arched roof (Griffiths and Simpson, 1966;
Rismiller, 1999, cited by Eldridge and Mensinga, 2007). In areas
where this species is present, evidence of its digging is particularly
abundant. These diggingsmay have substantial ecological importance
as a source of soil bioturbation. Bioturbation is a mechanical form of
ecosystem engineering that can alter soil physical and biotic properties
(James et al., 2009; Reichman and Seabloom, 2002), resulting in
increased soil mixing (Zhang et al., 2003) and species diversity
(Ceballos et al., 1999; Davidson and Lightfoot, 2008). Althoughmost
mammals associated with bioturbation in Australia have suffered
considerable reductions in density and distribution post-European
settlement (Fleming et al., 2014; McKenzie et al., 2007) the short-
beaked echidna is theAustralianmammalian species least impacted; it
has the widest geographical range of any Australian species and is
listed as ‘least concern’ by the InternationalUnion forConservation of
Nature red list (Nicol, 2015). Therefore, it may be one of Australia’s
most important living bioturbators, yet the extent and time it spends
digging has not been accurately recorded.
Accelerometers provide useful information concerning

movement, to infer biomechanics and ecologically relevant
movement patterns. The recording of acceleration using animal-
borne electronic devices is gaining popularity (e.g. Brown et al.,
2013; Martiskainen et al., 2009; Nathan et al., 2012; Shepard et al.,
2008; Williams et al., 2016; Wilson et al., 2006). The measure of
acceleration typically includes both static (due to gravity) and
dynamic (due to movement) components, which are recorded whilst
the animal carries out routine behaviours (Sato et al., 2003). Using
accelerometers, biologists can quantify the movement and
behaviour of wild animals during biologically and ecologically
significant events and periods, unlimited by visibility, observer bias
or geographic scale (Williams et al., 2016). For example, Lush et al.
(2016) used accelerometry to classify various behaviours for free-
ranging brown hares (Lepus europaeus). Accelerometers have also
been used to record how hunting dynamics in cheetahs (Acinonyx
jubatus) change while hunting different prey and the relative
importance of speed versus turning ability (Wilson et al., 2013b).
Accelerometers can also be used in combination with other sensors,
such as those recording location, to provide a wide range of detailed
information on the environmental context of animal behaviour that
can exceed the descriptive abilities of a human observer (Williams
et al., 2016; Wilson et al., 2013a). Accelerometers are therefore an
ideal approach for examining the biomechanics of echidna
locomotion and foraging, for a species that can be difficult to
observe undisturbed in the wild, and for which captive conditions
may impact behaviour and locomotory activities (Griffiths, 1989;
Jones, 1923). Here, we use accelerometer data, combined with GPS
tracking, for 11 echidnas in summer and spring 2012–2014 to

examine the biomechanics of wild, free-living echidnas in a semi-
arid open woodland habitat. We then apply these data to predict the
impact that the echidna may have on Australian ecosystems in the
form of bioturbation. We examine several aspects of echidna
movement: (1) how does the biomechanics of echidnas compare to
other mammals? (2) How far and how fast do echidnas walk during
a typical day? (3) How long do echidnas spend foraging and digging
each day? (4) Over what area does foraging occur? and (5) Do these
patterns of movement change in different seasons? This information
will help us to paint a picture of an echidna’s daily life, which may
be an important tool for environmental management and in
estimating ecosystem health.

MATERIALS AND METHODS
Study animals and field site
Eleven adult echidnas [mean body mass (Mb)=3.23±0.02 kg] were
studied at Dryandra Woodland (approximately 170 km South East of
Perth, Western Australia 31° 46′ S 117° 1′ E). Two seasons of data
were collected: summer, 1–11February 2013 (n=5) and spring, 11–21
October 2014 (n=6). Echidnas were captured by hand and then fitted
with accelerometers (see description below), GPS units (Cat Track 1,
CatnipTechnologies,Anderson, SC,USA, 1 fix perminute) and radio
transmitters (RI-2C, Holohil, Ontario, Canada), by bundling these in
tape and attaching them posterior-dorsally to an aluminium cradle
glued with epoxy adhesive to the spines of the lower back.

Echidnas were located and recaptured with the aid of the radio
transmitter every 1–4 days to download data from and recharge
batteries of the accelerometers and GPS units, up to a maximum of
6 days per individual. Before capture and after release, movements
were filmed using a high-speed hand-held camera (Casio EX-FH25,
Casio, Japan) at 120 frames s−1. In total, 64.5 min of echidna
footage was collected of echidnas undertaking natural behaviours.
Before each release, echidnas were hand held and filmed while they
were moved in x, y and z planes to set the orientation of the
accelerometer (Movie 1). Each individual was also filmed moving
across flat open ground at various speeds alongside a tape measure;
the camera (Pentax DSLR K50 in video mode; 29.97 frames s−1)
was held stationary, perpendicular to the direction of movement. At
the conclusion of the study, transmitters and metal cradles were
trimmed from the spines, and echidnas were released at the site of
last capture.

All experiments were performed according to the Australian
Code of Practice for the care and use of animals for scientific
purposes, with approval from the Curtin University Animal Ethics
Committee (AEC/2013/04, AEC/2014/04), inter-institutional
approval by the University of Western Australia and University of
Queensland animal ethics committees, and under licence from the
Western Australian Department of Parks and Wildlife (SF009683).

Accelerometers
The accelerometer logging device used for the summer study
comprised an 8-bit microcontroller (MSP430F2272) and a digital
tri-axial accelerometer (LIS302DL) that was logged at 100 Hz with a
dynamic range of ±2G at 8-bit resolution. Data were stored on a 2 GB
micro-SD card. The device was powered by a 100 mAh lithium-ion
battery regulated by a buck-boost switch-mode power supply
(MAX1159). All electronics (except for the battery) were mounted
on a circular printed circuit board with diameter 25 mm. The battery
(25 mm in diameter; 4 mm width) was secured parallel to the board.

This design had substantial battery life limitations (typically
achieving only 24 h logging time), but in the interim period between
the summer and spring studies, a new logging device was
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developed. This device comprised a 32-bit micro-controller
(PIC32MX695F512H) and a digital tri-axial accelerometer
(MPU9150) that was logged at 10 Hz with dynamic range of ±4G
and 16-bit resolution and data stored on an 8 GB micro-SD card.
The device was powered by a 700 mAh lithium-ion battery
regulated by a buck-boost switch-mode power supply
(TPS63030). All electronics (except for the battery) were
mounted on a square printed circuit board with 25×25 mm. The
battery was secured parallel to the board, and protected with a
conformal coating.

Biomechanical analysis
We used the serial digital pictures of each echidna as it moved
alongside a tape measure over open ground at various speeds to
determine stride length (SL), stride frequency (SF) and locomotor
speed (v). The position of the head of the echidna was digitised in
MATLAB (v.R2012a, MathWorks) using DLTdv3.m (Hedrick,
2008) and displacement data were smoothed using the smooth.m

function, which performs a Robust Lowess (linear fit) over a 0.2 s
moving time window. Each stride began at lift-off of the right
hindlimb and ended with the subsequent lift-off of the same limb.
Stride length was the linear movement distance of the hindfoot
between footfalls, in metres. Stride frequency was 1/time between
footfalls, in s−1. The average speed over the stride (m s−1) was
determined using the mean of the instantaneous speeds for all
frames between footfalls.

Activity analysis
Accelerometer data were analysed using a custom-written MatLab
script (C.J.C. and P.T.). High-speed video and accelerometer traces
were aligned using time stamps on both the film and accelerometer
trace. Aligned video was assessed and manually characterised into
one of four behaviours: inactivity, walking, digging/foraging
and climbing over obstacles. Inactivity was characterised by no
significant or coordinated x, y or z accelerometer signals (e.g.
Fig. 1A). Walking was characterised by a high-frequency, high-
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Fig. 1. Accelerometer traces showing activity
of a short-beaked echidna. (A) Inactive,
showing no variation of the accelerometer traces.
(B) Walking, showing periodic fluctuations; each
peak represents a complete stride cycle,
indicated by the lift-off of the left hindlimb (arrow).
(C) Digging, indicated by low amplitude, periodic
sections of activity; (D) climbing, showing a shift
in the baseline of the accelerometer. Colours
represent accelerometer traces in x (dark blue),
y (orange) and z directions (green). Arrows
correspond to events indicated in red on traces
below.
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amplitude continuous movement (Fig. 1B; Movie 2) and digging/
foraging by a low-amplitude, intermittent pattern of movement
(Fig. 1C; Movie 3). Climbing was characterised by a distinct
temporal shift in the baseline, indicating an ascending phase and a
descending phase (Fig. 1D; Movie 4). Owing to the abrupt nature of
the events, we interpret these climbing epochs as small log or other
obstacle negotiation events, rather than extended incline or decline
traversing events.
Accelerometer data for each recording were then imported into

MatLab and as part of this process, summer studies were
downsampled to 10 Hz to ensure consistency with the spring
studies. A customised MatLab graphical user interface (Fig. S1) was
used to segment the accelerometer data into discrete 30 s epochs.
Using accelerometry segments associated with video activities as
training data, each epoch was manually assigned to one of the four
activities. All behaviours that could not be classified into one of
these categories were marked as unknown. Data were then imported
into R (v.3.0.2). We removed the first 20 min of activity
immediately following release to remove any handling effect. To
determine the accuracy and repeatability of the manually assigned
behaviours, we characterised the accelerometer traces on a 30 s
epoch-by-epoch basis using 10 relevant feature vectors (see
Table S1 for full description) established by their use in previous
accelerometer studies (Campbell et al., 2013). We then performed a
linear discriminant function analysis, with jack-knifed (i.e. leave
one out) predictions using the LDA.R function from the MASS
package in R (Venables and Ripley, 2002). Before analysis, data
were scaled and centred using the scale.R function from the base
package in R. The accuracy of the feature vectors to predict the
activity was assessed relative to the prediction.
Analysis of the aligned film also revealed that first peak

frequency of the accelerometer trace coincided with a complete
stride cycle (Fig. 1B; Movie 2). This suggests that the peak
frequency of the accelerometer traces within walking epochs can be
used to estimate stride frequency. To determine peak frequency, we
calculated the power spectral density for the sum of all three axial
accelerometer bands, for each 30 s walking epoch, using the
function pwelch.m from the signal toolbox in MatLab (Fig. S2). We
then searched for the peak frequency in the range 0.35–2.3 Hz (i.e.
ignoring higher frequency ‘harmonics’) as this reflects the range of
walking speeds observed for freely moving echidnas (see below).
Walking speed and walking distance were then calculated for each

30 s epoch. Walking speed was calculated from the relationship
between stride frequency and speed (see below). Stride frequencywas
also used to estimate the number of steps taken in each epoch. Stride
length was estimated from the relationship between stride frequency
and stride length, and the product of stride length and the number of
steps allowed an estimation of the distance travelled in each epoch.
For each estimation, based on these biomechanical relationships, we
performed an additional sensitivity analysis using the upper and
lower 95% confidence bounds for each regression. We calculated the
mean values of walking speed and walking distance for all epochs
within each hour for each individual on each day, and used these
values in a statistical analysis of our data.

GPS data
GPS data were also analysed for comparison with, and to contribute
to, the accelerometer analysis above. We tested the accuracy of the
GPS unit by walking south along a road in our field site, and
compared the average GPS deviation from ‘known’ GPS co-
ordinates retrieved from Google Earth; while moving, the average
deviation for 11 GPS units was 5.37±0.90 m (mean±s.e.). GPS

deviation increased to 21.79±8.71 m when the GPS unit was held
stationary.

To remove this noise in our GPS data, we smoothed both the
latitude and longitude data independently using Robust Lowess
(linear fit) and used the smoothed coordinates to generate a likely
path of travel for the echidna. For each GPS fix we then calculated
the error in both the latitude and longitude data away from this likely
path, and excluded any points that were greater than 1 standard
deviation away from the path (Fig. 2A). The distance moved
between fixes was determined using the Haversine prediction and
the speed travelled between fixes was then estimated from the time
difference. As for the accelerometer data, we calculated the mean
values of speed and distance for all fixes within each hour for each
individual on each day; these mean hourly values for each
individual were used for statistical comparisons.

To calculate the minimum convex polygon area over which
activity occurred we used the adehabitatHR package in R (Calenge,
2006). Latitude and longitude data were imported in decimal
degrees and converted to a spatial class using the SpatialPoints.R
function and assigned to WGS84 as the coordinate reference system
using the proj4string.R function. These points were then
transformed into the local UTM 50 s (epsg: 32750) reference
system forWestern Australia using the spTransform.R function. The
minimum convex polygon area was then calculated using the mcp.R
function excluding 5% of outliers (Fig. 2B). Values were calculated
for each echidna and for each day for use in statistical analysis. Since
our echidnas were primarily nocturnal, we separated our days at
midday, so as to not subdivide the area moved throughout the
nocturnal activity period.

Ambient temperature
Ambient temperature (Ta) was recorded during both spring and
summer data collection periods. During the summer collection
period we retrieved information from the Bureau of Meteorology
data collection station in Wandering, WA (10917), located
approximately 27.5 km North West of the centre of our field site.
In spring, we used a calibrated temperature logger (±0.58°C,
Thermochron iButton, Dallas, Texas), placed in the shade, in
Dryandra Village, at the centre of our field site. For both datasets, we
used the dry bulb temperature recorded each minute, and calculated
the mean temperature, and the 75th and 25th percentiles, for each
hour, over the entire sampling period.

RESULTS
Locomotor biomechanics
We quantified the walking speed, stride length and stride frequency
of short-beaked echidnas based on 62 strides, from 17 sequences
filmed from 5 echidnas in spring. Speed varied from 0.06 m s−1 to
0.65 m s−1 with an average speed of 0.31 m s−1. Stride length
varied from 0.09 m to 0.28 m, with an average of 0.20 m, whereas
stride frequency varied from 0.35 Hz to 2.31 Hz, with a mean value
of 1.39 Hz. Stride frequency (SF) was a better predictor of speed (v)
than stride length (SL; Fig. 3) with regression relationships of
v=0.278 SF–0.075 (R2=0.92, F1,60=747, P<0.001), compared with
that of v=3.429SL–0.390 (R2=0.70, F1,60=144, P<0.001). Stride
frequency was related to stride length as SF=−0.682+10.132SL
(R2=0.51, F1,60=64, P<0.001).

Activity classification from accelerometry
In total, 24,507 summer epochs and 78,183 spring epochs were
included in the accelerometry analyses. A linear discriminant analysis
(LDA) including 10 accelerometer feature vectors (Table S1) was
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generally able to accurately predict inactivity, walking, foraging/
digging and climbing activities from the accelerometry signals. The
LDA predicted an overall accuracy for the known activity videos of
95.0% for summer data and 95.1% for spring data. The loadings for
the LDA functions were similar between the seasons (Table S2). For
both spring and summer, the simplemoving average (SMA) function,
representing the overall movement intensity across all three axis

within the epoch, was most highly loaded and separated walking
epochs from inactive and digging epochs (Fig. S3). The loadings for
the second LDA function variedmore between seasons. In summer, it
was characterised by high loadings of the maximum magnitude of
acceleration within the epoch (AccMagMax), the standard deviation
of z-axis accelerometer (SDz), the wavelength form (WL) and SMA.
In spring, it was similarly characterised by SMA but also the standard
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deviation of y-axis accelerometer (SDy). The second LDA
function separated digging, from inactive and walking, for both
seasons (Fig. S3).
The LDA results suggest that the most predictable activity pattern

in both seasons was inactive, with 99.9% of known inactive epochs
being accurately assigned in both the spring and summer datasets.
Walking was the second best predicted activity, with 91.6% accurate
assignment for spring data, and 91.2% accurate assignment for
summer. Digging/foraging had a lower prediction accuracy, with
64.9% of epochs being correctly assigned for spring, and 53.8% for
summer. Climbing activity was the most difficult to classify, with a
49.4% accuracy for spring data, but 60.2% accuracy for summer
data.

Activities
The recorded epochs represented over 27.1 days (651.5 h) of
activity from echidnas in spring and 8.51 days (204.2 h) from
echidnas in summer. The activity durations of the echidnas did not
vary significantly between the seasons, with a mean activity of
echidnas in spring of 16.7±3.6% of time active per day, compared
with summer 13.7±2.5% of time active per day (t11=−1.07,
P=0.307; Fig. 4). In both seasons, echidnas spent the majority of
their time resting, usually in burrows, logs or caves. Echidnas spent
much of their active time digging and foraging (10.7±2.2% of
16.7% of total daily activity in spring, 8.6±1.7% of 13.7% in
summer), with the remainder of the time devoted to walking and
climbing. Activities were not uniformly distributed throughout the
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day, but formed distinct daily patterns (Fig. 5). In spring, echidnas
became active after 17:00 h, with a peak of activity for walking and
climbing at 20:00 h shortly before a peak of digging activity at
21:00 h. Digging and foraging continued to taper off until 02:00 h,
while walking and climbing continued a little past this time. In
spring, echidnas had some low levels of activity throughout the day,
especially in the early afternoon. In contrast, in summer, echidnas
were almost completely nocturnal, with little or no activity during
the day. Activity began at 19:00–20:00 h and rose sharply to peak
between 22:00 h and 23:00 h before falling sharply again, dropping
to zero around 03:00 h (Fig. 5).
We recorded 1477 individual walking bouts and 2060 digging

bouts. The duration of digging but not walking bouts differed
between the seasons. In summer, echidnas had shorter bouts of
digging (F1,132=5.82, P=0.017), although there was no significant
seasonal difference for walking bout duration (F1,61=1.76, P=0.189;
Fig. 6). Average digging time for echidnas in spring was
6.49±0.41 min (n=106), while in summer, echidnas spent
4.73±0.56 min (n=51) digging at each foraging site. Walking
times were similar, with a mean of 6.91±1.42 min in spring,
whereas in summer, echidnas spent 3.92±0.41 min walking
between foraging sites (Fig. 6).
We used this information, combined with power spectral

density analysis of walking epochs (Fig. S2), to determine the
likely walking speeds of, and distances travelled by, echidnas
during their active periods. Walking speeds were higher for
echidnas in summer [mean per hour per individual 0.399±0.013
(95% CI, 0.382–0.417) m s−1, N=5, n=34] than in spring [mean
per hour per individual 0.284±0.007 (95% CI, 0.267–0.301)
m s−1; N=6, n=108, t140=7.65, P<0.001, Fig. 7A]. In spring,
echidna walking speeds tended to peak early in the evening,
around 17:00 h and again early in the morning around 04:00 h.
For summer echidnas, variation in speed was less tightly
associated with hour of the day, but maintained consistently
high speeds, which were matched only in spring for short
periods, at the start and end of each day’s activity (Fig. 7A).
The distribution of speeds also varied between seasons (Fig. 8).

Both seasons show that the preferred walking speed is between 0.25
and 0.35 m s−1. However, during spring, echidnas use a greater

proportion of slower speeds (0.05–0.25 m s−1) and very few high-
speed strides (0.5–0.65 m s−1). In contrast, during summer,
echidnas showed very few low-speed strides, but a greater
proportion of high-speed strides. This probably explains their
overall higher mean walking speed and may be linked to their
shorter periods of activity during summer.

As for speed, the distance moved per hour was also higher for
echidnas in summer (Fig. 7B): they moved an average of 321±34
(95%CI, 309–334) m h−1, yet since they were only actively walking
during 8 hours of the day, the total distance moved per day was 2575
(95% CI, 2477–2673) m. Echidnas moved significantly less per
hour in spring (t27=3.75, P<0.001), on average 168±22 (95% CI,
162–174) m h−1, but they were active during 21 different hours of
the day, meaning the sum total distance moved per day was
estimated to be 3531 (95% CI, 3398–3662) m. Thus, in summer,
echidnas appeared to move faster, but for a shorter period of time,
therefore they covered less distance.

GPS data
In general, GPS data supported the accelerometer movement data
(Fig. 7C,D). These data suggested that echidnas moved a mean
distance in spring of 234±18 m h−1 (n=83), close to the mean
distance estimate using accelerometer data of 168 m h−1, although
this predicts a higher summed daily distance moved of 5126 m
because of the higher number of hours of activity per day
compared with accelerometry data. For echidnas in summer,
estimates of mean distance moved per hour were much lower using
GPS data (73.13±7.78 m h−1), and were significantly lower than
for spring GPS estimates (t112=8.09, P<0.001). This low estimate
of mean distance moved per hour of activity for echidnas in
summer also predicted a similarly low daily sum distance moved of
1654 m.

The mean speed estimate using GPS data was much lower
than for accelerometer data, for both summer and spring
data. Spring GPS data suggested an average movement speed
of 0.089±0.007 m s−1, while summer GPS data suggested a
significantly lower mean speed of 0.04±0.02 m s−1 (t101=8.72,
P<0.001). The low speed estimates for echidnas in summer
were at least partially due to GPS noise caused by estimating
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low speeds during hours when echidnas were known to be
inactive (from accelerometer data). Excluding these inactive
(accelerometer) hours resulted in a slightly higher GPS-estimated
speed of 0.050±0.005 m s−1.
The daily area over which activities occurred did not appear to

vary strongly with season or with activity type. Including both
season and activity type in an ANOVA when comparing the area
bounded by a minimum convex polygon suggests no effect of
activity (F3,66=0.05, P=0.987, Fig. 2B), but a weak effect of
season (F1,66=4.268, P=0.043). This suggested that, in spring,
echidnas tended to have larger areas of activity; however, this
appears to be an effect of noise incurred during inactive periods.
When we reduced our parameter space by excluding inactive and
climbing activities, this second analysis showed no significant
difference between the daily area over which walking and
digging occurred (F1,40=0.11, P=0.737) or any significant
difference in the area of these activities between seasons
(F1,40=1.40, P=0.244). The mean daily foraging area (including
both walking and digging) for spring echidnas was
41,521±8163 m2 (41 ha), while the mean daily foraging area of
summer echidnas was 29,925±4979 m2 (30 ha).

DISCUSSION
The echidna provides a unique combination of phylogenetic history,
morphological differentiation and ecological specialisation, and
thus its biology is of particular scientific interest (Barker et al.,
2016). This basal mammalian group has a unique appendicular
skeleton and mode of locomotion, which are neither typically
mammalian nor reptilian but retains aspects of both lineages (Nicol,
2015). We therefore were interested in the biomechanics of wild,
free-living short-beaked echidnas to gain detailed information of
their fundamental locomotory function in a natural environment, for
comparison with other mammals. We then applied this basic
information of echidna locomotory physiology in an ecological
context, to better understand the ecosystem functions of echidnas in
their natural habitat and their potential contribution to ecosystem
health. This is of particular importance for echidnas as they are the
most widely distributed terrestrial mammal in Australia and have not
suffered the same significant declines in distribution and abundance
as other native mammals (Nicol, 2015). They therefore have a
considerable capacity to maintain their ecological role in a
landscape where other bioturbators have declined or are extinct
(Fleming et al., 2014).
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Biomechanics
The biomechanics of the short-beaked echidna in the field reflects
that of the related long-beaked echidna (Zaglossus bruijni)
determined from a single 7.3 kg captive specimen (Gambaryan
and Kuznetsov, 2013). The average walking speed of the short-
beaked echidna nearly exactly matches that reported for the long-
beaked echidna (0.35 m s−1), although the range of speeds reported
here for short-beaked echidnas included a higher maximal speed of
0.65 m s−1, which probably represents the top speed at which
echidnas can move. The stride frequency reported here is over 1.7
times higher than that reported for the long-beaked echidna
(Gambaryan and Kuznetsov, 2013). Yet, when compared with
stride frequencies reported by Heglund and Taylor (1988), both
echidna species have much lower stride frequencies compared with

other similar-sized mammals (Fig. 9A) including the closely related
1.4 kg platypus (Fish et al., 2001). This is also the case for stride
length; both the long- and short-beaked echidnas have relatively
short strides, with the short-beaked echidna having the shortest,
most constrained stride reported for any mammalian species
(Fig. 9B). This is likely to reflect a restriction in the stride length
resulting from a modification of the appendicular skeleton for a
semi-fossorial, myrmecophagous lifestyle. The limbs of digging
mammals, in contrast to the limbs of running mammals, have
relatively shorter distal segments and this functional modification is
also apparent for the short-beaked echidna (Casinos et al., 1993;
Elissamburu and Vizcaíno, 2004; Hildebrand, 1985; Hildebrand
and Goslow, 2001; Lehmann, 1963; Taylor, 1978). This
configuration allows the limbs to produce the high force
necessary to dig through the soil, although it necessarily reduces
speed, largely through a reduction in stride length (Hildebrand,
1985; Hildebrand and Goslow, 2001). This interpretation is
supported when considering the speed modulation strategies
shown by these echidnas. The short-beaked echidna has a higher
rate of change in stride frequency with speed when compared with
the long-beaked echidna and other mammal species (Fig. 9C),
suggesting a greater reliance on modification of stride frequency to
increase speed. In contrast, the long-beaked echidna shows a greater
modification in stride length with speed, reflecting its relatively
longer limbs (Fig. 9D; Gambaryan and Kuznetsov, 2013).

Together, these results suggest that the locomotor ability of the
short-beaked echidna is restricted, probably as a result of the
structure of the appendicular skeleton. The effective predator
defence afforded by the echidnas’ dorsal spines has presumably
allowed for a relaxed selection on locomotor speed, permitting
modification of the axial skeleton to favour digging at the expense
of velocity (Griffiths, 1989). Increased distal limb length and
reduced bulk, favour longer, more rapid strides and faster running,
but are at odds with the structural requirements for increased force
generation needed for digging (Withers et al., 2016). For example,
the forelimb structure of the fossorial eastern mole (Scalopus
aquaticus) favours force generation to the detriment of rapid
locomotion (Rose et al., 2013). Several other semi-fossorial
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myrmecophages, such as pangolins and armadillos, have also
presumably traded off locomotor ability for digging and like the
echidna, use armour to reduce susceptibility to predation
(Lovegrove, 2001); moles and other truly fossorial mammals rely
on their underground environment for protection. Put simply, you
don’t need to be able to run quickly if nothing can eat you.

Movement ecology
Short-beaked echidnas in our study were primarily nocturnal, with
some diurnal activity bouts during cooler spring days. This is
consistent with previous observations for echidnas obtained via
radio telemetry, which indicate that ambient temperature has a
significant influence on echidna activity, with predominantly
nocturnal activity in warmer seasons and regions, and more
diurnal behaviour in cooler seasons and habitats, such as alpine
environments (Abensperg-Traun and De Boer, 1992; Augee et al.,
1975; Brice et al., 2002; Grigg et al., 1992). As a consequence,
echidnas during summer are muchmore constrained in their activity,
with activity occurring in only 8 of 24 hourly blocks within a day
compared with echidnas in spring that have some bouts of activity in
21 of the 24 hourly blocks within a day.
Echidna activity probably reflects seasonal variation in behaviour

as a consequence of prey availability and also seasonal differences
in energy requirements because of thermoregulatory and
reproductive costs. Termites are the predominant prey of echidnas
in the Western Australian wheatbelt region (Abensperg-Traun,
1988) and are found closer to the soil surface for short periods
during cooler times of the day in summer, retreating deeper
underground when the surface soil heats up. During cooler
seasons, termites are more active close to the soil surface during
the day when it is warmer (Abensperg-Traun and Boer, 1990).
In addition, increased thermoregulatory costs during cooler
periods, and seasonal fattening, possibly to support costs of late
spring reproduction, presumably also contribute to the observed
seasonal variation in activity (Abensperg-Traun and De Boer,
1992).

Despite the short periods of activity, or perhaps because of it,
echidnas in summer must increase the pace of their foraging activity
to make better use of the reduced available activity time. During
summer, the walking speeds of echidnas were higher than during
spring (Fig. 7A) as a result of a greater proportion of fast-paced
strides close to the maximum speeds recorded (Fig. 8). The timing
of these fast walking speeds indicates that echidnas emerge from
their retreat (hollow log, rock cave or burrow) and move directly and
rapidly to foraging sites. Once at these foraging sites, echidnas in
summer undertook shorter bouts of digging compared with
echidnas observed during spring (Fig. 6), which again supports
previous reports obtained by radiotelemetry, of more extended,
vigorous foraging in spring (Abensperg-Traun and De Boer, 1992;
Augee et al., 2006). Short active periods have been reported for
other nocturnal myrmecophagous species. For example, the Sunda
pangolin (Manis javanica) is active for only 127±13 min day−1

(Lim and Ng, 2008). Camera trap data suggest that the giant anteater
(Myrmecophaga tridactyla) is active during only 7 h of the day, less
than for other mammals from a similar location (rodents,
lagomorphs, ungulates and carnivores; Blake et al., 2012). These
short active periods presumably relate to the low-energy lifestyle of
myrmecophagous mammals (Cooper and Withers, 2002; McNab,
1984).

The total distance moved for echidnas was between 3.6 km day−1

(spring) and 2.7 km day−1 (summer). A comparison with other
mammalian species (based on radiotelemetric fixes) suggests this
daily distance moved is somewhat higher than for similarly sized
mammals (Fig. 10) and more closely reflects that of carnivores,
which have been suggested to move about 4.4 times greater
distances than other mammals (Garland, 1983). This relatively high
daily distance moved could reflect their low absolute cost of
transport (despite the apparent inefficiency of echidna locomotion;
Edmeades and Baudinette, 1975), low energy density of prey
(Abensperg-Traun and Boer, 1990; Redford and Dorea, 1984) or a
relaxed predation pressure, resulting from their extensive dorsal
armament (Lovegrove, 2001).

Despite differences in movement patterns and distance moved
between the seasons, the area over which echidnas foraged was
similar in both spring (0.042 km2 day−1) and summer
(0.030 km2 day−1). This suggests that the area required for
sufficient foraging may be independent of season and the time
available, but probably forces moderation of walking speed.
Estimates of the short-beaked echidna’s home range across
Australia are between 0.4 to 1.1 km2 (Augee et al., 2006; Nicol,
2015) and are 0.65 km2 for wheatbelt reserves in Western Australia
(Abensperg-Traun, 1991). Therefore, echidnas use ∼6.5% of their
home range each day during spring and 5.0% during summer. As
seasonal activity appears to be at least partly relate to ambient
temperature, either directly or by indirectly impacting on prey
activity and location, it is possible that increasing Ta within the
south-west of Western Australia associated with climate change
(Indian Ocean Climate Initiative, 2002) may alter the extent and
duration of echidna activity and may reduce their role as ecosystem
engineers, through bioturbation.

Digging ecology
The locomotor ecology of echidnas is not only of interest in an
evolutionary and adaptive context, but it also impacts their
potentially significant ecological role in contributing to ecosystem
health (Eldridge and Mensinga, 2007). The potential ecosystem
benefits for echidna diggings have been examined in eastern
Australia’s semi-arid eucalypt woodlands. The foraging pits
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produced by echidnas almost double the amount of water absorbed
(measured via sorptivity and steady-state infiltration) compared
with undisturbed soils (Eldridge and Mensinga, 2007). Echidna
diggings also increase soil heterogeneity, by capturing and retaining
seeds and leaf litter, resulting in nearly twice the amount of organic
debris as equivalently sized undisturbed areas (Eldridge and
Mensinga, 2007). Furthermore, echidnas may contribute even
more directly to ecosystem health, because mechanical turnover of
the soil helps to trap organic matter below the surface (Fleming
et al., 2014). This brings organic material into contact with soil
invertebrates and microbes, which enhances the release of nutrients
and nutrient cycling (James et al., 2010). For example, the soil
respiration rate within echidna diggings was 30% higher than for
nearby undisturbed soil (Eldridge and Mensinga, 2007). Yet, while
bioturbation of the soil by echidnas has been demonstrated to
improve ecosystem health, the extent and volume magnitude of this
action is unclear.
Our study suggests that echidnas may make a substantial

contribution to ecosystem health via soil bioturbation. We have
established that echidnas spend up to 12% of their day digging. To
roughly estimate the amount of soil turnover this could represent, we
determined, based on video evidence, that echidnas were able to
completely bury themselves in soil and leaf litter, within a minute.
At this digging rate, echidnas could displace, each 30 s digging
epoch, a half their body volume as dirt and leaf litter. We calculate
the volume of an echidna based on a mean density of 1 g cm−3

(Mendez and Keys, 1960) to be 3230 cm3 for a 3.23 kg echidna.
Digging for 12% of the day means each echidna could move up to
0.558 m3 of soil and leaf litter a day. Our seasonal data seems to
suggest that this rate may be fairly consistent year round, which
indicates the potential for each echidna alone, to move up to 204 m3

of soil a year. This means that about 12 echidnas could move an
amount of soil equal to the volume of an Olympic-sized swimming
pool each year. Given the high population and wide distribution of
echidnas in Australia, this species is likely a keystone species
contributing to ecosystem health in Australia (Paine, 1995),
especially considering the widespread decline and extinction of
other potential mammalian ecosystem engineers.

Comparisons of accelerometer and GPS estimates
Previous studies of echidna activity and movement have relied on
radio-tracking data (e.g. Abensperg-Traun, 1991; Augee et al.,
2006; Brice et al., 2002), which can provide a coarse-scale picture of
activity but cannot provide the fine detail of activity that we were
able to record here. We also found that individual echidnas would
learn to modify their behaviour over time to avoid our approach (by
quickly retreating into hollow logs or rock caves), which could
impact on the utility of direct observations of activity. To accurately
measure biomechanics and movement ecology of echidnas on a fine
scale, we used a combination of accelerometer and GPS units. This
combination has been used previously (Bidder et al., 2015) and can
offer a unique perspective on animal movement. Each measurement
method has potential advantages and disadvantages, as our study
has demonstrated.
Accelerometers are capable of rapidly and accurately measuring

complex movements, and with a combination of biomechanical
measurements we could infer speed and distance moved, at least
within walking epochs. This technique did not, however, predict any
movement during epochs assigned to digging since the peak
frequency in these periods would be complicated by the additional
action of bioturbation. This ability to differentiate activity appears to
account for much of the variation between accelerometer-based

estimates when compared with GPS-based estimates. Movement
speed was lower for GPS-based estimates, since it includes epochs
of inactivity and digging, which have relatively low walking speeds,
driving overall mean estimates much lower. This suggests a limited
ability for GPS measurements alone to resolve fine-scale estimates
of walking speed.

Comparison of distance moved between the methods was much
more complicated. GPS-based estimates of distance moved were
higher for echidnas in spring but much lower in summer. This
comparison is complicated by the multiple potential sources of
measurement error associated with each technique. Distance moved
could only be estimated during walking epochs for accelerometer
data, which may exclude some smaller distances moved during
foraging or climbing epochs, resulting in lower estimates for
accelerometer-based techniques. Conversely, the accuracy of
predicted GPS location becomes reduced when the animal is
stationary, or deep in rock caves for long periods of time (D’Eon
et al., 2002; Dussault et al., 1999; Frair et al., 2004; Gamo et al.,
2000), meaning that the GPS output from a motionless echidna
involved considerable scatter around a central point (Fig. 2A). This
noise in the GPS signal results in non-zero estimates of distance
moved when an animal is actually stationary (Fig. 7C,D). This could
have the effect of increasing mean foraging distance estimates
during inactive periods and may result in a higher overall estimate of
mean distance moved, for example, as seen for echidnas in spring.
GPS estimates must also assume a straight line travel between
successive positions that does not often reflect the fine-scale
movement patterns of a foraging animal (Kramer and McLaughlin,
2001). This could lead to an underestimation of distance moved, for
example, as seen for echidnas in summer. While neither technique
can provide error-free estimates of distance moved, both are
probably useful for setting the upper and lower confidence bounds
for fine-scale daily movement of animals.

Finally, since GPS data allow for the geographic location to be
well defined, the area over which an animal foraged can be
estimated; this information is not available from accelerometers.
This is important when combining movement data with
geographical features of the landscape in GIS programs (Fig. 2C).
Thus, the combination of both GPS and accelerometer units can
provide a detailed representation of the movements of an animal
throughout the day.
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Fig. S1. Matlab GUI, showing example data, indicating how activities were classified. (a) Panel 
allowing the field of view in frame d to be changed. (b) Plot of each epoch for the entire trace (red) as 
classified by two of the variables used to assign features in Table 1, threshold crossing index, and 
Signal Magnitude area. Blue dots indicate epochs which are visible in frame d. (c) Overview of the 
entire activity trace, as indicated by various variables used to assign features in Table 1. Two periods 
of activity are visible, separated by long periods of inactivity. (d) Subset of the trace shown in c, the 
width of which is 10 minutes, determined by the panel in a. The three axes of the accelerometer trace 
are plotted (red, blue and black), above which activity has been classified. Vertical dashed lines 
separate 30 second epochs. This trace shows a long period of walking, followed by a period of digging. 
There is a clear climbing event, followed by a shorter bout of walking, then a recommencement of 
digging. (e) Panel used to advance (or move backwards) in time for panel d.  
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Fig. S2. Power spectral density analysis for a walking epoch used to determine the peak frequency 
of walking. The three axes of the accelerometer trace are plotted (red, blue and black), along with 
the sum of all three (green). The two red vertical lines indicate the range of frequencies (0.3 – 2.3 
Hz), for which we restricted our search for peak magnitude frequency. Three peaks are shown, 
the first at approximately 1.5 Hz represents a complete stride, from footfall of a limb to 
subsequent footfall of that same limb. The second peak at approximately 2.8 Hz, represents the half 
stride, and the third lower peak at approximately 4.2 Hz, represents the single footfalls of the limbs.  
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Fig. S3. Results of the linear discriminant analysis (LDA) including 10 feature vectors (shown in Table 
1 of the manuscript) used to predict activities from the accelerometry data. The activities are 
separated by shading. The weightings for the LD functions were similar between the seasons and 
are shown in Table 2 of the manuscript. 
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 Table S1. Variables used to assign features to each time epoch. 

Variable Description Formula 

Maximum Magnitude 
(AccMagMax) 

The maximum magnitude of acceleration within 
the epoch max (∀𝑛𝑛 ∈ 𝑁𝑁: ‖𝒂𝒂𝐻𝐻[𝑛𝑛]‖) 

Integrated Magnitude 
(AccInt) 

The sum of the magnitude of acceleration within 
the epoch �‖𝒂𝒂𝐻𝐻[𝑛𝑛]‖

𝑁𝑁

𝑛𝑛=1

 

Total Change in Inclination 
(AccTheta) 

The sum of change in inclination  of the 
accelerometer (relative to the earth) between 
successive samples within the epoch 

��cos−1 �
𝒂𝒂𝐿𝐿[𝑛𝑛] ∙ 𝒂𝒂𝐿𝐿[𝑛𝑛 + 1]

‖𝒂𝒂𝐿𝐿[𝑛𝑛]‖‖𝒂𝒂𝐿𝐿[𝑛𝑛 + 1]‖
��

𝑁𝑁

𝑛𝑛=1

 

Threshold Crossing Index 
(AccTC) 

The number of incidents within the epoch that 
the magnitude of acceleration exceeds a defined 
threshold, T (0.24G) 

�𝕀𝕀{(‖𝒂𝒂𝐻𝐻[𝑛𝑛]‖ − 𝑇𝑇) ∙ (‖𝒂𝒂𝐻𝐻[𝑛𝑛 − 1]‖ − 𝑇𝑇) < 0}
𝑁𝑁

𝑛𝑛=1

 

Time above Threshold 
(AccTAT) 

The duration (seconds) within the epoch that the 
magnitude of acceleration is above the defined 
threshold, T (0.24G) 

 𝑓𝑓𝑠𝑠� 𝕀𝕀{‖𝒂𝒂𝐻𝐻[𝑛𝑛]‖ > 𝑇𝑇}
𝑁𝑁

𝑛𝑛=1
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X-axis Standard Deviation 
(SD_x) 

The standard deviation of X-axis accelerometer 
data within the epoch �

1
𝑁𝑁
��𝒙𝒙𝒏𝒏 −  

1
𝑁𝑁
�(𝒙𝒙𝒌𝒌)
𝑁𝑁

𝑘𝑘=1

�
𝑁𝑁

𝑛𝑛=1

 

Y-axis Standard Deviation 
(SD_y) 

The standard deviation of Y-axis accelerometer 
data within the epoch �

1
𝑁𝑁
��𝒚𝒚𝒏𝒏 −  

1
𝑁𝑁
�(𝒚𝒚𝒌𝒌)
𝑁𝑁

𝑘𝑘=1

�
𝑁𝑁

𝑛𝑛=1

 

Z-axis Standard Deviation 
(SD_z) 

The standard deviation of Z-axis accelerometer 
data within the epoch �

1
𝑁𝑁
��𝒛𝒛𝒏𝒏 −  

1
𝑁𝑁
�(𝒛𝒛𝒌𝒌)
𝑁𝑁

𝑘𝑘=1

�
𝑁𝑁

𝑛𝑛=1

 

Signal Magnitude Area 
(SMA) 

The movement intensity across all three axis 
within the epoch 

1
𝑁𝑁
��|𝒙𝒙𝒏𝒏|

𝑁𝑁

𝑛𝑛=1

+ �|𝒚𝒚𝒏𝒏|
𝑁𝑁

𝑛𝑛=1

+ �|𝒛𝒛𝒏𝒏|
𝑁𝑁

𝑛𝑛=1

� 

Waveform Length (WL) 
The total variance within the epoch by calculating 
the cumulative sum of the difference between 
successive samples in each axis.  

1
𝑁𝑁
��|𝒙𝒙𝒏𝒏+𝟏𝟏 − 𝒙𝒙𝒏𝒏|
𝑁𝑁−1

𝑛𝑛=1

+ �|𝒚𝒚𝒏𝒏+𝟏𝟏 − 𝒚𝒚𝒏𝒏|
𝑁𝑁−1

𝑛𝑛=1

+ �|𝒛𝒛𝒏𝒏+𝟏𝟏 − 𝒛𝒛𝒏𝒏|
𝑁𝑁−1

𝑛𝑛=1

� 

𝒇𝒇𝑠𝑠 is the sampling frequency of accelerometer data, 10Hz; 
𝑵𝑵 denotes the number of samples in the epoch (300 for 30 second epochs at 10 Hz); 
𝒙𝒙𝒏𝒏,  𝒚𝒚𝒏𝒏, and 𝒛𝒛𝒏𝒏 are the nth samples of x, y and z-axis accelerometer data (respectively) within the epoch 
The magnitude of the accelerometer data, is calculated as the vector magnitude of the X, y and Z samples (𝑎𝑎𝑛𝑛 = �𝑥𝑥𝑛𝑛2 +  𝑦𝑦𝑛𝑛2 + 𝑧𝑧𝑛𝑛2). 𝒂𝒂𝐻𝐻is derived from the  high 
frequency component (0.1-5Hz) of the X, Y and Z samples; and 𝒂𝒂𝐿𝐿is derived from the low frequency component (<0.1Hz) of the X, Y and Z samples.  
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 Table S2. Loadings for the linear discriminant analysis (LDA) with groups based on activity. Abbreviations as in Table 1. Items in bold indicate the biggest 
contributors to each discriminate function (where loadings are > 2).   

Variable Summer Spring 

LD1 LD2 LD1 LD2 

AccInt 0.221 -0.935 0.130 -0.893 

AccMagMax 0.022 6.093 -1.359 -1.235 

AccTheta 0.225 -1.501 0.428 -1.020 

AccTC 0.029 -0.182 0.321 0.815 

AccTAT 0.254 0.173 0.516 1.741 

SD_x -0.185 -1.049 -0.248 -0.195 

SD_y -0.988 -0.241 1.372 -2.232 

SD_z 0.077 -3.434 -0.080 -1.468 

SMA 3.666 2.838 2.079 4.816 

WL -0.460 -2.391 -0.040 -0.592 
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