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Beyond body size: muscle biochemistry and body shape explain
ontogenetic variation of anti-predatory behaviour in the lizard
Salvator merianae
Fábio Cury de Barros1, José Eduardo de Carvalho2, Augusto Shinya Abe3 and Tiana Kohlsdorf1,*

ABSTRACT
Anti-predatory behaviour evolves under the strong action of natural
selection because the success of individuals avoiding predation
essentially defines their fitness. Choice of anti-predatory strategies is
defined by prey characteristics as well as environmental temperature.
An additional dimension often relegated in this multilevel equation is
the ontogenetic component. In the teguSalvator merianae, adults run
away from predators at high temperatures but prefer fighting when it is
cold, whereas juveniles exhibit the same flight strategy within a wide
thermal range. Here, we integrate physiology and morphology to
understand ontogenetic variation in the temperature-dependent shift
of anti-predatory behaviour in these lizards. We compiled data for
body shape and size, and quantified enzyme activity in hindlimb and
head muscles, testing the hypothesis that morphophysiological
models explain ontogenetic variation in behavioural associations.
Our prediction is that juveniles exhibit body shape and muscle
biochemistry that enhance flight strategies. We identified biochemical
differences between muscles mainly in the LDH:CS ratio, whereby
hindlimb muscles were more glycolytic than the jaw musculature.
Juveniles, which often use evasive strategies to avoid predation, have
more glycolytic hindlimb muscles and are much smaller when
compared with adults 1–2 years old. Ontogenetic differences in
body shape were identified but marginally contributed to behavioural
variation between juvenile and adult tegus, and variation in anti-
predatory behaviour in these lizards resides mainly in associations
between body size and muscle biochemistry. Our results are
discussed in the ecological context of predator avoidance by
individuals differing in body size living at temperature-variable
environments, where restrictions imposed by the cold could be
compensated by specific phenotypes.
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INTRODUCTION
Evolution of anti-predatory behaviour has been traditionally
explained under the focus of natural selection because the success
of organisms to avoid and/or chase predators probably affects their
survival in natural environments (Lima and Dill, 1990; Lind and
Cresswell, 2005; Magurran et al., 1993; Ydenberg and Dill, 1986).

When facing a predator and after choosing among possible anti-
predatory strategies, animals are likely to adjust the characteristics
and intensity of the elected behavioural response according to the
perceived level of predation risk (Brown et al., 2006; Greene, 1988;
Martín and López, 2003; Ydenberg and Dill, 1986). Many factors
might influence the choice and intensity of the elected anti-
predatory tactic, such as local conditions [i.e. environmental
temperature, amount of light/period of day and vegetation cover/
terrain characteristics (Savino and Stein, 1989; Christensen and
Persson, 1993; Brodie and Russell, 1999; Shine et al., 2000, 2003;
Schulte et al., 2004; Durso andMullin, 2014)] or type and density of
predators or their form of attack (Greene, 1988; Langkilde et al.,
2004; Relyea, 2001; Seyfarth et al., 1980). The anti-predatory
response is still dependent on the condition of the prey, for example,
on its stage in the reproductive cycle, nutritional status (Brown and
Shine, 2004; Burger et al., 1989; Shine et al., 2000) or its
phenotypic characteristics. In the garter snake Thamnophis
ordinoides, the degree of aggressiveness towards a predator is
associated with differences in colour patterns (Brodie, 1989, 1992)
and these characteristics may be established during embryo
development, as observed by Hagman and colleagues (2015) in
another snake, Natrix natrix.

From an eco-morphological perspective [based on Arnold’s
paradigm (Arnold, 1983; Garland and Losos, 1994)], the focus on
anti-predatory behaviour is supported in morphological and
physiological associations that directly influence performance
and, in the latter instance, an individual’s fitness. For fighters,
predictions of biomechanical models derived for biting
performance in squamates and fishes conclude that larger
individuals and those with bigger heads will bite harder
(Broeckhoven and Mouton, 2014; Herrel et al., 2001a, 2002a,b;
Verwaijen et al., 2002). Individuals having such characteristics may
therefore accept higher risks when facing a predator – a trend
demonstrated even intra-specifically in males of the lizard Lacerta
monticola (López et al., 2005). However, survival may also be
achieved by running away from a given predator: how fast an animal
can flee is frequently sustained by morphological associations, such
as the variation in limb proportions observed in many lizard species
(see Losos, 1990a,b; Bonine and Garland, 1999; Irschick, 2000;
Melville and Swain, 2000; McElroy and Reilly, 2009, for some
examples) that seem essential for success in escaping. Survival rates
of hatchling lizards, for example, are positively correlated with
sprint speeds and stride lengths, although this metric also benefits
from increased body size (Miles, 2004; Warner and Andrews,
2002). Given that morphological features favouring combat against
a predator do not necessarily enhance the performance of escape, a
trade-off between fight and flight abilities might be expected (as
observed in Anderson and Vitt, 1990; López and Martín, 2002;
Cameron et al., 2013 in a sexual selection context). In fact, suchReceived 19 August 2015; Accepted 8 March 2016
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trade-off has been corroborated by data obtained in tegu lizards:
individuals exhibiting higher bite forces are those having impaired
escape responses because they run more slowly (Herrel et al., 2009).
The expected trade-off between fight and flight abilities probably

also resides on physiological traits, such as those related to the
metabolic and structural profiles of skeletal muscles. Increased
proportions of slow-oxidative fibres – fuelled by aerobic metabolic
pathways – might enhance endurance but would also require an
improved oxygen delivery capacity and increased mitochondrial
scope in skeletal muscles (Bennett, 1991; Gleeson and Harrison,
1986; Johnston, 1981). By contrast, muscle fibres having a
glycolytic nature are fuelled by anaerobic metabolic pathways and
contract quickly but also fatigue rapidly (Bennett, 1991; Gleeson
and Harrison, 1986; Johnston, 1981). The relative contributions of
aerobic and anaerobic profiles, established both by relative
proportions of different compositions of fibre types and by the
activity of specific enzymes, might be coupled with changes in
muscle mass, contraction speeds, and elastic and force properties
that determine muscle function and ultimately define organismal
performance (Ashley-Ross and Barker, 2002; Baldwin, 1982;
Bonine et al., 2001; Choi and Park, 1996; Gleeson et al., 1980;
James et al., 2005; McBrayer and White, 2002; Pasi and Carrier,
2003; Putnam and Bennett, 1983; Seibel et al., 1998; Throckmorton
and Saubert, 1982). As a consequence, we expect an association
between the metabolic scope of different muscle groups and the
performance exhibited in specific activities where these are
involved, which in the context of anti-predatory behaviour, might
encompass combat strategies, such as biting, and the escape
response of running away.
The morphological and physiological relationships influencing

the choice of a given anti-predatory strategy are not static and,
especially in vertebrate ectotherms, these can vary according to the
thermal conditions where predator–prey interactions occur. For
example, locomotion and metabolism are, in general, reduced at low
temperatures (Bennett, 1980, 1990; Huey, 1982; but see Angilletta,
2009; James, 2013 for reviews), and an animal’s sensorial
perception might also be restricted in such conditions (Van
Damme et al., 1990). Accordingly, shifts between flight and fight
behaviour in response to variation in body temperature have been
demonstrated in several squamate lineages (Citadini and Navas,
2013; Crowley and Pietruszka, 1983; Hertz et al., 1982; Mautz
et al., 1992; Polčák and Gvoždík, 2014; Schieffelin and De Queiroz,
1991). For example, the agamid lizard Trapelus pallida exhibits a
temperature-dependent shift from evasive to aggressive behaviours
that could be explained by increased thermal sensitivity of muscles
used for sprinting in comparison to those involved in biting (Herrel

et al., 2007). Such a temperature-dependent shift in behaviour also
has an ontogenetic dimension: adults of tegu lizards (Salvator
merianae) run away from a predator at high temperatures but choose
combat when it is cold, whereas juveniles exhibit the same flight
strategy within a wide range of thermal conditions (de Barros et al.,
2010). Given that ontogenetic development encompasses
modifications at different levels of organization, it is plausible to
predict that morpho-physiological parameters could at least partially
explain the differences between adult and juvenile tegus in the anti-
predatory responses exhibited at lower temperatures.

Ignoring ontogenetic components in studies focusing on
temperature-dependent shifts of anti-predatory behaviour seems
counterintuitive in face of the effects of a juvenile’s survival for
the perpetuation of populations in natural habitats. Here, we fill
this gap by integrating physiological and morphological traits to
test the hypothesis that multivariate models explain the
ontogenetic variation in thermal relationships of anti-predatory
behaviour reported in the Argentine black and white tegu Salvator
merianae Duméril and Bibron 1839. Based on this hypothesis, we
predict: (1) that enhanced glycolytic scopes in the limb
musculature of juveniles compensate for the impairment
imposed by small body sizes and allow these individuals to flee
from predators even at limiting thermal conditions involving low
temperatures; and (2) that modifications of shape, involving
relative limb proportions or jaw length, also explain differences in
anti-predatory behaviour between the ontogenetic classes of tegu
lizards. To test this prediction, we combine behavioural results for
recently hatched juveniles and adult tegus reported in de Barros
et al. (2010) with new data for body morphometry and muscle
biochemistry obtained in hindlimb and head muscles sampled
from the same individuals. The integrative approach used here
explores interactions among the multiple dimensions that are
likely to determine whether a given prey will fight or flee when
facing a predator.

MATERIALS AND METHODS
The dataset assembled to test our hypothesis is detailed here
following three main categories: morphology, muscle biochemistry
and behaviour. We focused on anti-predatory responses exhibited by
juvenile and adult tegus at 22.5°C. From a previous study (de Barros
et al., 2010) we know that, as body temperature decreases, most adults
shift from running away to turning aggressive at 22°C, but juveniles
remain evasive, and therefore at this temperature, the behavioural
differences become prominent (see Table S1 to access behaviour
frequencies in each experimental temperature and Table S2 and
Fig. S3 for detailed analyses showing differences in anti-predatory
behaviour between ontogenetic classes at lower temperatures).

Composed dataset
Animals and tissue samples
In this study, we combined results on anti-predatory behaviour
previously published by de Barros et al. (2010) with new data on
morphology and muscle biochemistry obtained for the same
individuals studied before. All individuals of Salvator merianae
used in this study were obtained from a captive population reared
outdoors in large enclosures at Universidade Estadual Paulista in
Rio Claro (São Paulo, Brazil; permit from IBAMA number 02001-
000412/94-28). Tegu lizards are found in both rural and urban areas
of Brazil, and animals are found in thewild at the University campus
where the outdoor enclosures for captive colonies are located; we
therefore assumed that animals used in our study were reared under
equivalent conditions as natural populations –with both populations

List of symbols and abbreviations
AESM adductor externus superfilialis muscle
AICc Akaike information criterion with a correction for finite

sample sizes
CS citrate synthase
ILIM iliofibularis muscle
Lfem femur length
Lhum humerus length
Ljaw upper jaw length
Lrad radius length
Ltib tibia length
LDH lactate dehydrogenase
Mb body mass
Tb activity body temperature
TBS total behaviour score
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even being exposed to the same occasional predators (i.e. birds and
mammals). After obtaining behavioural data published by de Barros
et al. (2010), we measured 17 recently-hatched juveniles (89.81±
19.13 g) and 10 adults at 1–2 years of age (871.05±209.85 g) of
Salvator merianae and sampled muscle tissues. Tegus were killed
by overdose of anaesthetic (0.5 ml solution of xylazine and
ketamine, 2:1 ratio) that was injected intraperitoneally in juveniles
and in adults was inoculated directly into the tail vein in order to
enhance anaesthetic effects. Animals were immediately measured
(see below), and then tissue samples were removed for biochemical
assays, which were performed in twomuscles: the adductor externus
superfilialis (AESM) from the head and the iliofibularis (ILIM),
adjacent to the femur. The AESM is involved in jaw movements,
including bite (McBrayer and White, 2002; Schwenk, 2000),
whereas the ILIM is recruited to push the body during locomotion
(Bonine et al., 2005; Jayne et al., 1990). These two muscles are
anatomically similar because they both have a central region mainly
composed by slow-oxidative fibres that is surrounded by a region
where most fibres are glycolytic or exhibit intermediate metabolic
characteristics (Gleeson et al., 1980; Putnam et al., 1980;
Throckmorton and Saubert, 1982). Samples used in the
biochemical assays were dissected from the right side of
individuals, immediately frozen in liquid nitrogen and then stored
at −70°C. All the procedures were authorized by IBAMA permits
(186/2006, number 14109-1/RAN IBAMA) and approved by the
Ethics Committee for the Use of Animals in Research of the
University of São Paulo (CEUA, protocol number 06.1.1390.53.5).

Morphology
Sevenmorphological traits of body size and shapeweremeasured in all
tegus before muscle dissection. Body mass was recorded in a digital
scale and a digital caliper (Mitutoyo CD-15B; ±0.01 mm) was used to
measure snout to vent length (SVL), humerus and radius lengths (Lhum
and Lrad, respectively), femur and tibia lengths (Lfem and Ltib,
respectively) and upper jaw length (Ljaw, measured from tympanic
aperture to the tip of the snout). For the statistical analyses all
morphological variables were log10 transformed, and scaling effects
were explored through SMA regressions (see below).

Muscle biochemistry
Biochemical properties of hindlimb and head muscles were
assessed based on maximum activity of two metabolic enzymes:
lactate dehydrogenase (LDH) was used as an indicator of oxygen-
independent pathways, whereas citrate synthase (CS) represented
the muscle aerobic metabolism (Eme et al., 2009; Fields et al., 2008;
Kirkton et al., 2011; Kohlsdorf et al., 2004; Norton et al., 2000;
Rosa et al., 2009; Seibel et al., 1998; de Souza et al., 2004; Vetter
and Lynn, 1997). Enzyme activities were measured using a
Beckman DU-70 spectrophotometer under saturating and non-
inhibitory substrate conditions, following de Souza et al. (2004), as
further detailed. We performed all analyses with results obtained at
22.5°C because this is the temperature where ontogenetic
differences in the anti-predatory responses exhibited by tegu
lizards are prominent (de Barros et al., 2010). In order to
minimize possible errors derived from enzymatic activity accessed
solely at 22.5°C and with the aim of also evaluating effects of
temperature variation on muscle biochemistry, we performed
biochemical assays at three temperatures (18, 27 and 36°C) and
constructed thermal-sensitivity curves for LDH and CS, which were
then used to estimate activities of these two enzymes at 22.5°C.
First, we pooled individual values obtained from biochemical
assays into individual regression curves and inferred a linear

relationship between temperature and biochemical activity of LDH
and CS for each ontogenetic category in both muscles at the thermal
experimental interval accessed (see Tables S3, S4 and Figs S4, S5).
Subsequently, fitted values at 22.5°C were estimated from each
individual regression through a simple linear equation (y=a+bx).
These procedures were implemented using TableCurve2D software
(Systat). Enzyme activities of LDH and CS at 22.5°C were then used
for calculation of the LDH:CS ratio in each muscle, used as an
indirect measurement of glycolytic or oxidative potential of a tissue
(Gleeson and Harrison, 1986).

In order to measure enzyme activities of LDH and CS in head and
limb muscles, a cross-sectional fraction 1 mm thick of AESM and
ILIM was extracted of each muscle sample previously obtained
from tegus stored frozen at −70°C. These fractions included all
fibres (white and red) composing the muscles, which are parallel-
fibred tissues. Each sample from each individual was homogenized
in nine volumes of buffer 20 mmol l−1 imidazole-HCl, pH 7.4 with
1 mmol l−1 PMSF (phenylmethylsulphonyl fluoride), 2 mmol l−1

EDTA and 0.1% Triton X-100. Cellular and mitochondrial
membranes were lysed using a sonicator U-200Scontrol (IKA
LaborTechnik) with 50% cycle and 0.5 amplitude settings for three
periods of 10 s at 4°C. Samples were then centrifuged at 1500 rpm at
4°C for 2 min, and the supernatant was diluted according to each
enzyme protocol. Specifically, activity of LDH was estimated as the
absorbance of NADH at 340 nm. The assay consisted of 633 μl
imidazole-HCl (100 mmol l−1), pH 7.0, 35 μl dithiothreitol
(100 mmol l−1), 7 μl NADH (0.15 mmol l−1), 7 μl homogenate
(diluted 1:40) and 18 μl pyruvate (40 mmol l−1). Pyruvate was
omitted in the control. For CS assay, enzyme activity was measured
as the reduction of DTNB (dithio-trinitrobenzoic acid) at 412 nm.
The assay consisted of 522 μl Tris-HCl (100 mmol l−1), pH 8.0,
70 μl DTNB (0.1 mmol l−1), 50 μl acetyl-CoA (3 mmol l−1), 28 μl
homogenate (diluted 1:30) and 30 μl of oxaloacetic acid
(20 mmol l−1). Oxaloacetic acid was omitted in the control. All
reactions were performed at a final volume of 0.7 ml and in
duplicate. Maximum enzyme activity was set within a range of 90 s
intervals, and mean values between duplicates were used in the
analyses. Results were expressed in μmol of substrate converted to
product per minute per gram of wet mass.

Behaviour: establishment of a total behaviour score (TBS)
We used the original dataset from de Barros et al. (2010) comprising
27 tegus (10 adults and 17 juveniles) to establish a ‘total behaviour
score’ (TBS). As explained previously, we focused on anti-
predatory responses exhibited at 22.5°C because at this
temperature adult tegus shift from running away to confronting
the predator, and therefore behavioural variation between juveniles
and adults is more prominent. To construct the TBS, we assigned
different weights to each of the five anti-predatory behaviours
reported by de Barros et al. (2010), giving positive values to
aggressive behaviours and negative values to escape behaviours as
follows: bite=2, defensive posture=1, no response/immobility=0,
walk=−1 and run=−2 (modified from Citadini and Navas, 2013). In
order to differentiate the most aggressive individuals, we granted 5
extra points as a positive bonus to the TBS of individuals that bit or
assumed a defensive posture with in the first 20 s of each duplicate
test. By contrast, 5 points were subtracted from the TBS of
individuals that exhibited escape strategies after all stimuli imposed
at each duplicate test. As a result, the final TBSs varied from 50
positive points (i.e. 40 points in a hypothetical individual that bit in
all trials added with 10 extra points from the positive bonus if the
individual was aggressive within the first 20 s in both trials) to 50
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negative points (i.e. −40 points in a hypothetical individual that ran
away in both trials, and a further −10 points for being evasive in all
stimuli). The normality of TBS was confirmed through a Shapiro–
Wilk normality test (W=0.9419; P=0.1357). A detailed table
including the total set of responses is provided in Table S1A–E.

Data analyses
All analyses were performed in R (version 3.1.0; https://cran.
r-project.org) using RStudio (0.98.501). Statistical analyses were
carried out in three complementary steps. First, we assessed the
physiological disparity between juveniles and adults regarding
muscle biochemistry. Then, we analysed allometric differences
between juvenile and adult tegus. Finally, we combined
morphological and physiological traits to test for associations with
anti-predatory behavioural responses exhibited at 22.5°C, which
were carried out using two complementary approaches: a canonical
correspondence analysis (CCA) to test associations of each
behavioural response separately and comparisons between
complex linear models that combined morphological and
physiological traits to explain the variation in TBSs.
Implementation of the analyses performed in each step is further
detailed in the three sections below.

Physiological disparity between juveniles and adults
Differences between juveniles and adults regarding enzyme
activities in head and hindlimb muscles were tested using a two-
factor analysis of variance (ANOVA). Specifically, we used as
dependent variables either LDH activity, CS activity or the LDH:CS
ratio, whereas muscle and age class were included as independent
variables in the model, assuming interactions between terms. A post
hoc test was performed, with ‘muscle-type’ as a fixed factor across
age classes, using the R package ‘phia’ (http://cran.r-project.org/
package=phia).

Morphological differences between age classes and construction of
‘shape’ matrix
We first tested for differences between juveniles and adult tegus
using a Student’s t-test on SVL. Subsequently, we investigated
allometric differences between age classes testing for significant
associations between SVL and the remaining morphological
measurements. We tested for significant differences in slope and
elevation of regression curves using standard major axis (SMA)
regressions implemented in the R package ‘smatr3’ (http://www.
bio.mq.edu.au/ecology/SMATR/; Warton et al., 2012), where age
was included as a covariate. After these allometric analyses, we
performed between-group regressions because slopes were similar
within ages for all traits; such an approach aimed to separate size

effects from shape variation (Berner, 2011; Reist, 1985). From this
analysis, we retained the regression residuals of the size-corrected
humerus (RLhum), radius (RLrad), femur (RLfem), tibia (RLtib) (all
measured on right-hand side of each animal) and upper jaw (RLjaw)
lengths, which were combined into the multivariate matrix ‘shape’.

Integrative analyses: canonical correspondence analysis and model
comparisons
In order to identify relationships betweenmorpho-physiological traits
and anti-predatory behaviour in a multivariate framework, we first
explored how studied traits were related by performing a CCA
(Legendre and Legendre, 1998) and testing the axes significance
using the R package vegan (http://vegan.r-forge.r-project.org). In this
step, we used the frequencies of each behavioural category separately
to consider the individual values (see detailed table in Table S1B),
which totalled 27 observations. We used the ratio between LDH:CS
activity of muscles and the shape components matrix as traits. In
addition, we included log bodymass (logMb) to the model as a proxy
of body size. We chose log Mb instead of SVL because muscle
potential is also dependent on the cross-section area and the total
number of muscle fibres, which relates to the total volume, rather than
length, of the animal. As a complementary step of data analyses, we
selected the morpho-physiological traits that most contributed to the
variation observed in significant canonical axes and performed a
multiple linear model using TBS as a dependent variable. We started
by fitting a complex model [lm (TBS∼ILIM LDH:CS ratio+AESM
LDH:CS ratio+log Mb+RLjaw+RLhum+RLtib)] and used a backward
elimination to select the best models (Gotelli and Ellison, 2011). The

Table 1. Mean values with standard deviation for morphological and
physiological traits examined in juvenile and adult tegu lizards

Adults (N=10) Juveniles (N=17)

Physiology
ILIM LDH activity (units g−1) 790.89±114.34 863.25±139.30
ILIM CS activity (units g−1) 8.24±1.95 7.16±1.00
ILIM LDH:CS ratio 100.77±26.05 123.28±28.99
AESM LDH activity (units g−1) 386.06±45.36 319.14±39.23
AESM CS activity (units g−1) 8.77±1.56 9.49±1.36
AESM LDH:CS ratio 44.93±7.63 33.99±4.49

Morphology
Mb (g) 871.05±209.85 89.81±19.13
SVL (mm) 285.40±17.73 141.36±10.06
Ljaw (mm) 68.60±3.31 37.39±1.70
Lfem (mm) 49.50±3.72 23.44±2.31
Ltib (mm) 65.20±4.98 28.71±2.44
Lhum (mm) 38.00±2.98 17.24±1.56
Lrad (mm) 43.70±2.21 21.19±1.66

Table 2. Statistical results from the analyses of variance (ANOVA) performed with enzyme activity as a dependent factor and muscle and age as
categorical predictors

d.f.

LDH activity CS activity LDH:CS ratio

SS F P SS F P SS F P

Muscle 1 819,437 86.936 <0.001 1.430 0.700 0.407 15,590 38.209 <0.001
Age 1 28,202 2.992 0.090 3.230 1.585 0.214 754 1.848 0.180
Muscle:age 1 61,071 6.479 0.014 10.160 4.987 0.030 3524 8.636 0.005
Interactions
Adductor (J versus A) 1 28,202 2.992 0.180 3.229 1.585 0.428 754 1.848 0.360
Iliofibularis (J versus A) 1 32,962 3.497 0.135 7.350 3.607 0.127 3191 7.821 0.015

Residuals 50

P-values significant at the 0.05 level are indicated in bold.
SS, sums of squares for ANOVA; F, exact or approximate F-value; P, exact or approximate P-value (in case of interaction, P-adjusted value by Bonferroni); d.f.,
degrees of freedom; J, juveniles; A, adults.
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significance level for retention of a given variable in the model was
set to 0.05 and Akaike information criterion with a correction for
finite sample sizes (AICc) was used to confirm the model with better
fit, following Burnham and Anderson (2002).

RESULTS
This study integrates physiological and morphological traits for
understanding variation in a temperature-dependent shift of anti-
predatory behaviour that results in the differences among
ontogenetic classes of tegus. The first step of data analyses here
consisted of evaluating the physiological disparity between
juveniles and adults. The main differences in muscle profiles were
found in the LDH:CS ratio. Specifically, the ILIM is proportionally
3-fold more glycolytic than the AESM, and juveniles have hindlimb
muscles proportionally 20%more glycolytic than adults, as detailed
in post hoc tests (see Table 1 for absolute values and Table 2 for
descriptive statistics). We also detected differences between
muscles in maximum LDH activity (∼2.5-fold higher in hindlimb

than head muscles) but ontogeny does not contribute to such
differences. Maximum CS activity did not differ in relation to
ontogeny or between muscles.

The second step of data analysis in this study consisted of testing
for morphological differences between age classes. This analysis
corroborated that juveniles are much smaller than adults in SVL
(F1,25=659.6, P<0.001, see Fig. S2 to access boxplot of size
differences between juvenile and adult tegu lizards). Regarding
body shape, we also identified differences in slope elevation
between age classes in the size-corrected traits: juveniles have
proportionally shorter upper jaws than adult tegus (Table 3).

The final step of data evaluation consisted of integrative analyses
based on two complementary approaches. Results from the CCA
indicated that increased logMb and higher values of the LDH:CS ratio
in the AEMS are positively correlated to aggressive behaviour of
tegus in the CCA1, whereas increased values of the LDH:CS ratio in
ILIM and a relative shorter upper jaw are associated with evasive
strategies on CCA2 (Fig. 1). Humerus and tibia lengths also slightly

Table 3. Results of standard major axis (SMA) regressions performed on morphological traits to examine between-age differences in tegu lizards

Between-groups test

Ljaw Lfem Ltib Lhum Lrad

H0: slopes are
equal

0.3825 0.7030 0.8935 0.9782 0.4821

Estimate
(slope)

A=0.796 [0.501,
1.266]; J=0.634
[0.469, 0.855]

A=1.229 [0.789,
1.911]; J=1.372
[0.902, 2.085]

A=1.245 [0.823,
1.884]; J=1.193
[0.710, 1.981]

A=1.251 [0.675,
2.316]; J=1.239
[0.870, 1.765]

A=0.828 [0.434,
1.581]; J=1.073
[0.717, 1.608]

H0: no
difference in
elevation

0.0319 0.2241 0.7478 0.5277 0.8016

Estimate
(elevation)

A=0.157 [−0.305,
0.618]; J=0.102
[−0.271, 0.476]

A=−1.481 [−2.519,
−0.443]; J=−1.411
[−2.252, −0.571]

A=−1.200 [−2.230,
−0.170]; J=−1.182
[−2.016, −0.348]

A=−1.471 [−2.495,
−0.446]; J=−1.435
[−2.264, −0.606]

A=−0.789 [−1.708,
0.129]; J=−0.802
[−1.545, −0.059]

d.f. 1 1 1 1 1

P-values significant at the 0.05 level are indicated in bold. d.f., degrees of freedom.

Table 4. Correlations between the morphophysiological traits and
behavioural responses identified in the canonical correspondence
analysis (CCA) with ANOVA results for maximum permutations (9999)

Canonical variables

CCA1 CCA2 CCA3 CCA4

Behavioural response
Bite 1.108 −1.296 0.624 −0.352
Defensive posture 0.860 −0.274 −0.052 0.067
Immobile 0.767 0.497 −0.012 −0.068
Walk −0.576 0.107 0.128 0.049
Run −0.729 −0.154 −0.139 −0.056

Morphophysiological trait
AESM LDH:CS ratio 0.613 0.329 0.673 0.154
ILIM LDH:CS ratio −0.524 0.536 −0.024 −0.010
log Mb 0.939 0.217 0.106 0.176
RLjaw 0.054 −0.476 −0.182 0.393
RLfem 0.015 −0.124 −0.176 −0.311
RLtib −0.072 −0.180 −0.275 0.491
RLhum −0.185 0.222 −0.419 0.609
RLrad 0.042 0.028 −0.302 0.012

Importance of constrained components (0.66 of variation)
Eigenvalue 0.540 0.097 0.016 0.005
Proportion explained 0.819 0.148 0.025 0.008
Cumulative proportion 0.819 0.967 0.992 1.000
F-statistic 23.352 4.205 0.711 0.231
P-value 0.001 0.012 0.558 0.915

Numbers in bold indicate statistically significant differences for models.
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Fig. 1. Scatterplot of the first and second principal canonical axis for
juvenile and adult Salvator merianae. Data were obtained from CCAs of
morphophysiological traits (various bone lengths andmuscle LDH:CS ratios, in
red) and behavioural responses (walk, run, bite, etc., black text). N=27
observations. Red arrows indicate the direction and magnitude of each trait
contribution for both representative CCA axes.

1653

RESEARCH ARTICLE Journal of Experimental Biology (2016) 219, 1649-1658 doi:10.1242/jeb.130740

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.130740/-/DC1


contributed to the second axis (Table 4; Fig. 1). The second approach,
based on comparisons of AICc, supports a best-fit model where
logMb explains anti-predatory behaviour together with the LDH:CS
ratio in the ILIM (Table 5, Fig. 2A, B), whereas components of shape
had no association with variation in TBS values. These results
suggest that juvenile tegus, which more often escape from predators
by adopting evasive strategies, exhibit higher glycolytic scopes on
hindlimb muscles when compared with young adults.

DISCUSSION
The present study provides an integrative explanation for the
ontogenetic variation in a temperature-dependent shift in the anti-
predatory behaviour of tegu lizards. According to our results, the

ontogenetic differences in the temperature-dependent shift of anti-
predatory behaviour previously reported in tegus (de Barros et al.,
2010) resides in multidimensional associations that integrate body
size with muscle biochemistry. In the ecological context of predator
avoidance in natural habitats, adults are big and therefore might rely
on strong bites during combat – a strategy that is inefficient in
juveniles, which are comparatively smaller than adults. When tegus
emerge from their shelters early in the morning to feed and/or
thermoregulate, they experience body temperatures that can vary
from 18 to 26°C depending on the season, reaching 33–37°C later in
the day (Sanders et al., 2015) – the second range encompassing their
preferential temperatures (Cecchetto and Naretto, 2015). Therefore,
these animals may in fact face predators when their body
temperatures are below their preferred range. Restrictions imposed
by environmental thermal conditions may be compensated in
juveniles by phenotypes that enhance escape, as further discussed.

Enzyme activities on hindlimb and head muscles
Results from this study confirm that muscles employed for different
activities in tegus are metabolically distinct despite having similar
fibre type architectures: ILIM, involved in locomotion, is
proportionally more glycolytic than AESM, used to bite. Aerobic
metabolism provides only a portion of the total energy used to
sustain high levels of activity in lizards, and most of the available
energy is derived from anaerobic metabolism (Bennett and Dawson,
1972; Bennett and Licht, 1972; but see Bennett, 1991 for a review).
The relative proportion of aerobic and anaerobic pathways is
however an important factor in these animals, and can be used for
understating how the metabolic balance between two pathways
influences muscle function. In tegus, AESM is activated during fast
and high amplitudes that characterize crushing bites, as well as other
head muscles, but is the only one active during slow closing bites
(McBrayer and White, 2002). In this case, an equilibrated ratio
between LDH and CS activities in the jaw muscle may reflect the
important role of slow-oxidative fibres in this muscle for joint
stabilization and prey manipulation (Throckmorton and Saubert,
1982), activities common to juveniles and adults.

Table 5. Results of tests of multiple linear model with TBS as dependent variable and bodymass, shape components and LDH:CS ratio of muscles
as independent variables

Dependent variable: TBS

Model 1 Model 2 Model 3 Model 4 Model 5

AESM LDH:CS ratio −0.339 (0.566) −0.339 (0.552)
P=0.556 P=0.547

ILIM LDH:CS ratio −0.200 (0.114) −0.203 (0.106) −0.212 (0.104) −0.240 (0.099) −0.234 (0.098)
P=0.094 P=0.070 P=0.054 P=0.024 P=0.026

log Mb 36.756 (9.088) 36.716 (8.861) 32.728 (5.930) 32.416 (5.908) 32.542 (5.885)
P=0.001 P<0.001 P<0.001 P<0.001 P<0.001

RLjaw 275.536 (275.278) 262.537 (232.313) 286.597 (225.703) 173.753 (191.407)
P=0.329 P=0.272 P=0.218 P=0.374

RLhum −135.906 (135.713) −137.402 (131.558) −120.210 (126.698)
P=0.329 P=0.309 P=0.354

RLtib −9.799 (104.283)
P=0.927

Constant −60.745 (22.923) −60.314 (21.924) −63.021 (21.168) −59.037 (20.702) −60.058 (20.596)
P=0.016 P=0.012 P=0.007 P=0.010 P=0.008

Observations 27 27 27 27 27
R² 0.709 0.708 0.703 0.691 0.680
AICc (dAICc) 237.3 (11.7) 233.2 (7.6) 230.0 (4.3) 227.7 (2.1) 225.6 (0.0)
Weight 0.002 0.015 0.076 0.236 0.671
F-statistic (d.f.) 8.104 (6,20) 10.204 (5,21) 13.031 (4,22) 17.149 (3,23) 25.498 (2,24)

The best model (M5) was selected from a complex model (M1) by backward step and AICc values. Standard errors are reported in parentheses. Numbers in bold
indicate statistically significant associations for a given model.
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Fig. 2. Correlation between behavioural index and morphophysiological
factors in tegu lizards. (A) TBS versus LDH:CS activity ratio in ILIM. (B) TBS
versus log Mb. N=27 individuals. Solid lines indicate regression lines of the
model corresponding to each factor.
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The results for enzyme activity in the hindlimbmuscle differ from
those obtained for the jaw muscle: juvenile tegus have a hindlimb
muscle that is proportionally more glycolytic than that of adults, a
trend that contributes for understanding why recently-hatched tegus
rely on running away from a predator regardless of thermal
conditions (de Barros et al., 2010). Although energetic demands
would favour during growth a reduction in the levels of aerobic
metabolism coupled with increased anaerobic rates (for discussions
on scaling-effects, see Somero and Childress, 1980; Childress and
Somero, 1990; Norton et al., 2000; and Moyes and Genge, 2010 for
a review), in juveniles locomotion may face increased selection
pressures triggered by predation rates, summed to their
developmental demands (Kirkton et al., 2011). In that sense,
phenotypes that enhance escaping, such as hindlimb muscles that
are comparatively more glycolytic, may compensate for restrictions
imposed by environmental conditions involving low temperatures.
Adults of Salvator merianae, in contrast, exhibit more equilibrated
LDH:CS ratios in their hindlimb muscles, a balance that may grant
suitable use of aerobic pathways during locomotion. Adult tegus are
active foragers that course long distances in their natural habitats
(Winck et al., 2011), and they depend on enlarged home ranges for
feeding and maintaining large body sizes (Winck et al., 2011 and
references therein). An equilibrium between aerobic and anaerobic
pathways may not only sustain efficient locomotion of adults
through their territories, but likely contributes for buffering muscle
pH and enhancing lactate metabolism for glycogen re-synthesis
after intense locomotion (Curtin et al., 1997; Gleeson, 1996;
Passarella et al., 2008).

Ontogenetic variation of anti-predatory behaviour:
integration between morphology, physiology and ecology
Recently-hatched tegus are small and rely on escape behaviours
when facing a predator (de Barros et al., 2010). These young
animals have enhanced glycolytic capacity in their hindlimb
muscles, which probably contributes to success in escaping from
an aggressor. The combination of an enhanced anaerobic
metabolism in hindlimb muscles with the preference for strategies
that involve escape is likely to be effective in animals that are too
small to successfully injure a predator (de Barros et al., 2010),
especially because access to energetic storages in glycolytic
pathways is quick and produces powerful sprints (Bennett, 1991;
Bennett and Licht, 1972; Childress and Somero, 1990; Somero and
Childress, 1980). Increased LDH:CS ratios in hindlimb muscles of
juvenile tegus seem particularly relevant at low temperatures, when
enzyme activities may be impaired for sustaining energetic demands
of continuous activity but combating the predator is not an
efficacious choice.
However, the multilevel equation explaining evolution of anti-

predatory behaviour in Salvator merianae is not composed solely of
morphological proportions and biochemical scopes changing
through ontogeny. Tegu lizards hatch in the summer (late
December–January in South America) at ∼15 g, and face an
increase of ∼5- to 7-fold in Mb in the subsequent 5 months, before
experiencing their first dormancy period in the winter (de Souza
et al., 2004). After dormancy, which involves partial loss of Mb,
animals restart growing as soon as they resume feeding, and at the
end of the first year, young adults can weigh 300 g (de Souza et al.,
2004). This ontogenetic change inMb is coupled with a remarkable
differentiation in coloration (see supplementarymaterial Fig. S1) and
the cast of predators attacking juveniles and adults may be also
variable (A.A., unpublished observations). The cryptic coloration of
young tegus, together with the observation that they are rarely

observed moving around in their natural habitats (A.A., unpublished
observations), corroborates the hypothesis of ontogenetic differences
in the preferred strategy of tegus for avoiding predation: juveniles
rely on camouflage and avoid direct interactions with predators,
remaining restricted to small territories until reaching a body size that
allows effective biting and expansion of home ranges (Winck et al.,
2011; A.A., unpublished observations).

The behavioural shifts addressed here meet the ecology of tegu
lizards regarding daily variation in body temperatures as well as
seasonal changes involving dormancy periods. Early in the
morning, the Tb of tegus is mainly influenced by temperature
changes inside their shelters and, because this parameter is variable
throughout the year (Sanders et al., 2015; Tattersall et al., 2016), in
hotter seasons the lizards might avoid emerging from their shelters if
Tb is too low. During the night, Tb decreases very slowly, especially
in the summer, when nocturnal temperatures are higher – an effect
that is more prominent in larger tegus because of thermal inertia
(Tattersall et al., 2016). In colder months, however, the night-time
minimum Tb in tegus remains low but maximum daily voluntary
temperatures also decline, a pattern related to dormancy (Sanders
et al., 2015). During this period, although tegus remain inside their
burrows most of the time, they also emerge for briefly periods, and
their Tb remains between 18 and 22°C (Andrade, 2016; Sanders
et al., 2015). Such a condition represents a critical situation for
survival, because animals may face predators when their Tb is below
the preferred temperature and locomotion could be impaired.
Therefore, the behavioural differences between newly hatched and
young adult tegus at 22.5°C are ecologically relevant.

Body temperatures can change fast in small lizards because of
their body size, but newborn tegus also rely on camouflage to escape
from predators (see Fig. S1; A.A., unpublished observations).
Consistently, our results indicate that recently hatched juveniles
exhibit an enhanced metabolic capacity that is compatible with their
propensity to run regardless of thermal conditions (de Barros et al.,
2010). Adult tegus may also face predators when emerging from
shelters during the winter, but warming might be slow as a result of
their large body size. The preference of adult tegus for aggressive
behaviour when facing predators presumably compensates for
restrictions in escaping abilities imposed by specific environmental
conditions that impair locomotion (de Barros et al., 2010; Brodie
and Russell, 1999; Citadini and Navas, 2013; Crowley and
Pietruszka, 1983; Hertz et al., 1982). Increased body size often
enhances biting forces, probably reducing the threshold for the
individual to engage an aggressive encounter because the animal
will combat predators while minimizing its risk of injury (see
Huyghe et al., 2005; Herrel et al., 2009; de Barros et al., 2010 for
some examples). In addition to body size, bite performance is also
affected by variation in body shape: wider and higher heads
accommodate larger jaw muscles and increase jaw lever lengths,
which improve bite performance (Herrel et al., 2001a,b;
Vanhooydonck et al., 2007). Defensive postures potentially
followed by effective bites also demand coordination between
jaw, neck and forelimb, as jaw movements must be synchronized
with body motion to grant suitable head velocity and jaw opening
angles (Montuelle et al., 2009, 2012). For example, in teiids and
cordyliforms, strikes on prey or during combat involve forelimb
extension at the elbow joint to elevate the neck in the late phase of
jaw opening (Montuelle et al., 2012). Because of these
relationships, it is not surprising that some morphological
measurements in Salvator merianae, such as relatively longer
upper jaws and shorter humerus bones, have appeared as factors
associated with fight behaviour in the CCA. However, associations
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with body shape were less apparent in our dataset than those
involving body size and muscle biochemistry – a trend that might be
due to our sample being composed of young adults. The largest
tegus used in our study are on average 900 g and 300 mm in terms of
body size, representing a growth stage of 1–2 years of age, at which
tegus are not completely sexually mature. Older animals that are
capable of reproducing can reach 5–8 kg (A.A., unpublished
observations). These animals can become more aggressive and
they have enlarged head muscles and cranial structure, which
enhances bite performance (see Herrel et al., 2009). Although we
could not distinguish the sexes in our sample, in general, the males
of Salvator merianae show a stronger degree of integration between
the cranium, mandible and mandibular muscles, suggesting a sexual
selection pressure linked to combat (Fabre et al., 2014). Our study
provides evidence for identifiable differences between newly born
animals and young adult tegus that have experienced their first cycle
of dormancy, and the contrast between ontogenetic classes may be
even more prominent when older animals are considered.
Extreme size disparity, in our study represented by recently

hatched juveniles and young adults, imposes differences in prey–
predator relationships between ontogenetic classes. As discussed
here, absolute levels of locomotor output and variation in continuous
activity and running bursts depend on morphology and physiology,
and the influence of environmental thermal conditions in the
preference for a given anti-predatory strategy is coupled with such
phenotypic associations. In this study, we show that body size
influences the anti-predatory strategy adopted by tegu lizards and we
also promote the relative ratio between LDH and CS activity in
hindlimb muscles as an important factor for understanding
behavioural differences between ontogenetic classes. Other
morphophysiological components, such as a longer upper jaw and
increased LDH:CS ratios in head muscles, may also contribute to the
shift favouring more aggressive behaviour when temperatures are
low, although such an effect seems less apparent in our dataset.
Organismal traits are often studied under compartmentalized
approaches that dissect morphology from physiology in studies of
behavioural variation that usually relegate ontogeny. However, we
show that these dimensions interact in a complex equation that
underlies ontogenetic variation in the thermal-dependent shift of anti-
predatory behaviour in tegu lizards.
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Table S1. Behavioural responses for each individual at different temperatures, data published in Barros et al. (2010). The ‘latency time’ indicates the 

time until the individual adopted an aggressive response during application of 10 stimuli; dashes represent animals that did not exhibit aggressive 

responses. TBS indicates the total behaviour score considering both tests. A = adult tegus; J = juvenile tegus. (A) 18.0°C; (B) 22.5°C; (C) 27.0°C; 

(D) 31.5°C and (E) 36.0°C. 

Table S1. A 

Behavioural Test 1 Behavioural Test 2 

TBS 
Individual Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 
Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 

A01 0 7 1 0 2 13 0 0 6 0 4 – 5 

A02 0 6 3 0 1 13 0 0 7 0 3 – 1 

A03 1 6 0 1 2 12 2 7 0 0 1 2 27 

A04 0 7 1 0 2 11 0 5 1 0 4 57 15 

A05 0 5 3 0 2 24 0 3 1 0 6 40 4 

A06 0 2 2 0 6 26 0 1 3 0 6 51 -2 

A07 0 0 4 0 6 – 0 0 2 0 8 – -6 

A08 0 0 4 0 6 – 0 0 3 0 7 – -7 

A09 0 9 0 0 1 2 0 10 0 0 0 5 29 

A10 0 0 1 0 9 – 0 0 1 0 9 – -2 

J01 0 0 5 5 0 – 0 0 2 4 4 – -30 

J02 0 0 3 0 7 – 0 1 8 0 1 84 -10 

J03 0 0 3 7 0 – 0 0 4 5 1 – -36 

J04 0 3 6 0 1 13 0 0 6 1 3 – -6 

J05 0 2 6 2 0 34 0 4 2 0 4 8 -1 

J06 0 4 1 5 0 23 0 0 5 1 4 – -14 

J07 0 0 3 5 2 – 0 0 1 9 0 – -37 

J08 0 0 3 1 6 – 0 0 9 1 0 – -21 

J09 0 1 0 9 0 95 0 0 2 6 2 – -31 

J10 0 0 9 0 1 – 0 0 7 0 3 – -16 

J11 0 0 6 4 0 – 0 0 7 1 2 – -28 

J12 0 4 2 4 0 44 0 0 4 1 5 – -12 

J13 0 2 6 0 2 77 0 0 8 0 2 – -12 

J14 0 0 9 0 2 – 0 0 8 1 1 – -19 

J15 0 6 4 0 0 16 0 0 3 4 3 – -4 

J16 0 0 0 10 0 – 0 0 3 6 1 – -40 

J17 0 0 5 2 3 – 0 0 8 1 1 – -19 
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Table S1. B 

Behavioural Test 1 Behavioural Test 2 

TBS 
Individual Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 
Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 

A01 0 8 0 0 2 56 0 0 4 0 0 – 4 

A02 0 6 2 1 1 40 0 3 1 1 0 55 2 

A03 1 9 0 0 0 4 4 6 0 0 4 3 35 

A04 0 9 0 0 1 13 0 5 0 0 0 3 24 

A05 0 7 0 0 3 23 0 7 2 0 0 4 17 

A06 0 7 0 0 3 22 0 1 0 0 0 90 8 

A07 0 2 0 0 8 – 0 1 6 0 0 24 -3 

A08 0 3 0 0 7 – 0 0 4 0 0 – -1 

A09 1 9 0 0 0 2 0 9 0 0 0 17 30 

A10 0 0 2 0 8 – 0 4 2 0 0 54 4 

J01 0 0 1 7 2 – 0 0 3 2 0 – -22 

J02 0 5 5 0 0 24 0 1 7 0 0 2 -1 

J03 0 0 5 5 0 – 0 0 3 6 0 – -35 

J04 0 0 8 2 0 – 0 0 6 3 0 – -29 

J05 0 0 5 5 0 – 0 0 7 1 0 – -29 

J06 1 4 0 5 0 4 0 8 0 1 0 13 12 

J07 0 0 3 7 0 – 0 0 2 8 0 – -45 

J08 0 2 2 6 0 35 0 0 5 4 0 – -25 

J09 0 0 3 7 0 – 0 0 2 8 0 – -45 

J10 0 0 6 4 0 – 0 0 7 0 0 – -26 

J11 0 1 1 8 0 35 0 0 6 4 0 – -35 

J12 0 1 7 2 0 58 0 1 6 3 0 15 -16 

J13 0 0 5 5 0 – 0 0 8 2 0 – -37 

J14 0 0 8 2 0 – 0 0 6 3 0 – -29 

J15 1 9 0 0 0 33 0 0 9 1 0 – -5 

J16 0 0 1 9 0 – 0 0 5 5 0 – -44 

J17 0 0 4 6 0 – 0 0 2 2 0 – -27 
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Table S1. C 

Behavioural Test 1 Behavioural Test 2 

TBS 
Individual Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 
Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 

A01 0 0 10 0 0 – 0 0 10 0 0 – -30 

A02 0 0 2 7 1 – 0 0 5 3 2 – -27 

A03 2 7 0 1 0 4 2 8 0 0 0 3 31 

A04 0 0 10 0 0 – 0 0 10 0 0 – -30 

A05 0 0 9 0 1 – 0 1 9 0 0 22 -17 

A06 0 0 6 1 3 – 0 0 5 0 5 – -13 

A07 0 0 8 1 1 – 0 0 3 0 7 – -13 

A08 0 0 5 5 0 – 0 0 6 0 4 – -26 

A09 0 5 0 0 5 4 0 4 2 0 4 57 12 

A10 0 0 10 0 0 – 0 0 6 0 4 – -21 

J01 0 0 0 6 4 – 0 0 3 4 3 – -23 

J02 1 2 7 0 0 5 0 2 7 0 1 5 2 

J03 0 0 0 10 0 – 0 0 2 5 3 – -37 

J04 0 0 1 9 0 – 0 0 3 7 0 – -46 

J05 0 2 1 7 0 66 0 1 4 3 2 43 -22 

J06 2 2 0 6 0 14 0 2 2 6 0 82 -13 

J07 0 0 1 9 0 – 0 0 2 8 0 – -47 

J08 0 0 0 10 0 – 0 0 2 8 0 – -48 

J09 0 0 0 10 0 – 0 0 1 9 0 – -49 

J10 0 0 3 2 5 – 0 0 6 1 3 – -15 

J11 0 0 0 10 0 – 0 0 3 7 0 – -47 

J12 0 5 0 5 0 23 0 1 4 6 0 – -25 

J13 0 6 4 0 0 40 0 0 1 9 0 – -22 

J14 0 0 5 5 0 – 0 1 5 4 0 15 -27 

J15 1 8 0 1 0 13 0 8 2 0 0 2 24 

J16 0 0 0 10 0 – 0 0 0 10 0 – -50 

J17 0 0 0 8 2 – 0 0 3 7 0 – -38 
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Table S1. D 

Behavioural Test 1 Behavioural Test 2 

TBS 
Individual Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 
Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 

A01 0 0 10 0 0 – 0 0 6 4 0 – -34 

A02 0 0 4 4 2 – 0 0 4 3 3 – -22 

A03 0 8 0 0 2 3 1 3 3 1 2 12 18 

A04 0 1 7 0 2 24 0 0 2 0 8 – -8 

A05 0 0 4 5 1 – 0 0 7 1 1 52 -23 

A06 0 0 4 3 3 – 0 0 8 2 0 – -27 

A07 0 0 7 1 2 – 0 0 2 0 8 – -11 

A08 0 0 9 1 0 – 0 0 9 1 0 – -32 

A09 0 2 6 0 2 4 0 1 8 0 1 45 -6 

A10 0 0 9 0 1 – 0 0 9 1 0 – -25 

J01 0 0 3 7 0 – 0 0 1 9 0 – -46 

J02 0 4 3 3 0 6 0 3 7 0 0 54 -4 

J03 0 0 0 10 0 – 0 0 0 10 0 – -50 

J04 0 0 0 10 0 – 0 0 1 9 0 – -49 

J05 0 0 1 9 0 – 0 2 2 6 0 12 -31 

J06 2 1 2 5 0 14 0 0 2 8 0 – -25 

J07 0 0 0 10 0 – 0 0 0 10 0 – -50 

J08 0 0 0 10 0 – 0 0 1 9 0 – -49 

J09 0 0 2 8 0 – 0 0 3 7 0 – -45 

J10 0 2 3 5 0 13 0 0 2 8 0 – -29 

J11 0 0 0 10 0 – 0 0 1 9 0 – -49 

J12 0 0 1 9 0 – 0 0 0 10 0 – -49 

J13 0 0 3 7 0 – 0 0 7 3 0 – -40 

J14 0 0 0 10 0 – 0 0 0 10 0 – -50 

J15 1 3 0 6 0 27 0 0 0 10 0 – -32 

J16 0 0 1 9 0 – 0 0 0 10 0 – -49 

J17 0 0 2 8 0 – 0 0 1 8 1 – -40 
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Table S1. E 

Behavioural Test 1 Behavioural Test 2 

TBS 
Individual Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 
Bite 

Defensive 

posture 
Walk Run Immobile 

Latency 

time 

A01 0 0 9 1 0 – 0 0 6 4 0 – -35 

A02 0 0 4 6 0 – 0 0 3 6 1 – -36 

A03 0 6 3 1 0 2 1 6 1 0 2 11 18 

A04 0 0 10 0 0 – 0 0 8 1 1 – -25 

A05 0 0 7 3 0 – 0 0 8 1 1 – -28 

A06 0 0 10 0 0 – 0 0 9 1 0 – -31 

A07 0 0 8 0 2 – 0 0 5 0 5 – -13 

A08 0 0 10 0 0 – 0 0 8 2 0 – -32 

A09 0 5 5 0 0 21 0 0 8 0 2 – -8 

A10 0 0 6 4 0 – 0 0 5 5 0 – -39 

J01 0 0 0 10 0 – 0 0 2 8 0 – -48 

J02 0 0 9 1 0 – 0 0 9 1 0 – -32 

J03 0 0 0 10 0 – 0 0 0 10 0 – -50 

J04 0 0 1 9 0 – 0 0 4 6 0 – -45 

J05 0 0 7 3 0 – 0 0 0 10 0 – -43 

J06 0 0 0 10 0 – 0 0 6 4 0 – -44 

J07 0 0 0 10 0 – 0 0 0 10 0 – -50 

J08 0 0 1 9 0 – 0 0 1 9 0 – -48 

J09 0 0 0 10 0 – 0 0 1 9 0 – -49 

J10 0 0 0 10 0 – 0 0 5 5 0 – -45 

J11 0 0 2 8 0 – 0 0 0 10 0 – -48 

J12 0 0 3 7 0 – 0 0 0 10 0 – -47 

J13 0 0 5 5 1 – 0 0 5 5 0 – -40 

J14 0 0 0 10 0 – 0 0 1 9 0 – -49 

J15 0 0 1 9 0 – 0 0 0 10 0 – -49 

J16 0 0 0 10 0 – 0 0 1 9 0 – -49 

J17 0 0 0 10 0 – 0 0 1 9 0 – -49 
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Table S2. Statistical results for ANOVA testing differences between juveniles and adults of tegu lizards in terms of anti-predatory behaviour. 

TBS 

Df SS F P 

TEMP 4 9192.7 10.393 < 0.001 

AGE 1 4310.4 19.493 < 0.001 

TEMP:AGE 4 1633.8 1.847 0.124 

Interactions 

18.0°C (J vs A) 1 4310.4 19.493 < 0.001 

22.5°C (J vs A) 1 8790.4 39.753 < 0.001 

27.0°C (J vs A) 1 1418.9 6.417 0.063 

31.5°C (J vs A) 1 3451.1 15.607 < 0.001 

36.0°C (J vs A) 1 3411.3 15.427 < 0.001 

Residuals 125 

SS: sums of squares for ANOVA; F: exact or approximate F-value; P: exact or approximate P-value (in case of interaction, p-adjusted value by Bonferroni); Df: 

degrees of freedom; J: juveniles; A: adults. 
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Table S3. AICc results and estimated values for CS and LDH enzymatic activity at 22.5°C, describing similarities between best-fit models and a 

simple linear regression equation (y=a+bx) in juveniles of tegu lizards in the adductor and ileofibularis muscles. 

Baby Tegus Equation Rank r² F RSS AICc ∆AICc 
y-value      

(at 22.5°C) 
95 Conf - 95 Conf + 

Scatter 

plot 

Enzyme: CS        

Muscle: Adductor 

y=a+b/lnx 1 0.730 132.78 138.48 21.50 0.00 9.98 9.47 10.50 FigS4. (A) 

y=a+bx 41 0.712 121.06 148.02 21.70 0.20 9.49 8.92 10.06 FigS4. (B) 

Enzyme: CS        

Muscle: Ileofibularis 

y=a+bxlnx 1 0.803 199.90 94.46 20.35 0.00 7.10 4.27 9.93 FigS4. (C) 

y=a+bx 3 0.803 199.14 94.75 20.36 0.01 7.16 4.33 9.99 FigS4. (D) 

Enzyme: LDH        

Muscle: Adductor 
y=a+bx²lnx 1 0.892 405.44 99.60 43.18 0.00 300.88 279.35 322.42 FigS4. (E) 

y=a+bx 29 0.879 355.09 99.84 43.53 0.35 319.14 297.32 340.95 FigS4. (F) 

Enzyme: LDH       

Muscle: Ileofibularis 
y=a+bx²lnx 1 0.865 312.99 235.45 49.40 0.00 818.39 757.67 879.11 FigS4. (G) 

y=a+bx 23 0.854 286.46 250.63 49.62 0.23 863.25 802.98 923.51 FigS4. (H) 
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Table S4. AICc results and estimatee values for CS and LDH enzymatic activity at 22.5°C, describing similarities between best-fit models and a 

simple linear regression equation (y=a+bx) in adult tegus in the adductor and ileofibularis muscles.   

Adult Tegus Equation Rank r² F RSS AICc ∆AICc 
y-value      

(at 22.5°C) 
95 Conf - 95 Conf + 

Scatter 

plot 

Enzyme: CS        

Muscle: Adductor 
y=a+bx0.5lnx 1 0.655 53.05 190,509.62 20.51 0.00 8.85 8.04 9.67 FigS5. (A) 

y=a+bx 10 0.654 52.85 214,249.03 20.52 0.01 8.77 7.95 9.60 FigS5. (B) 

Enzyme: CS        

Muscle: Ileofibularis 
y=a+bx³ 1 0.606 43.07 1,514,638.40 23.09 0.00 7.73 6.37 9.08 FigS5. (C) 

y=a+bx 15 0.581 38.76 1,634,451.50 23.28 0.19 8.24 6.93 9.55 FigS5. (D) 

Enzyme: LDH        

Muscle: Adductor 
y=a+bx² 1 0.824 131.24 220,319.65 43.61 0.00 370.55 330.16 410.93 FigS5. (E) 

y=a+bx 13 0.819 127.01 226,334.43 43.69 0.08 386.06 346.63 425.49 FigS5. (F) 

Enzyme: LDH       

Muscle: Ileofibularis 
y=a+bx² 1 0.881 208.10 642,230.05 46.82 0.00 757.10 688.15 826.06 FigS5. (G) 

y=a+bx 22 0.873 192.82 686,673.64 47.02 0.20 790.89 722.22 859.57 FigS5. (H) 
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Fig. S1. Differences in color pattern between (A) juvenile tegus (recently-hatched individuals) and (B) adult (1 year-old, 800 g) individual of 

Salvator merianae. 

(A) (B) 
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Fig. S2. Boxplot of SIZE differences between juveniles and adults of tegu lizards. 
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Fig. S3. Barplot of TBS means in different temperatures for young and adult tegus. Positive values represents 

aggressive behaviour and negative values are related to evasive tactics. ‘***’ represents significance level at 

0.05. 
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(A) (B) 

(C) (D) 

(E) (F) 
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(G) (H) 

Fig. S4. Graphs comparing best-fit models and a simple linear regression equation (y=a+bx) describing enzyme 

activity relationships at three experimental temperatures (18, 27 and 36°C) in juveniles of tegu lizards in the 

adductor and ileofibularis muscles. Internal lines represent confidence intervals at 95% and external lines the 

predicted values at 95%. 
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(A) (B) 

(C) (D) 

(E) (F) 
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(G) (H) 

Fig. S5. Graphs comparing best-fit models and a simple linear regression equation (y=a+bx) describing enzyme 

activity relationships at three experimental temperatures (18, 27 and 36°C) in adults of tegu lizards in the 

adductor and ileofibularis muscles. Internal lines represent confidence intervals at 95% and external lines the 

predicted values at 95%. 
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