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Symbiont type influences trophic plasticity of a model
cnidarian–dinoflagellate symbiosis
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ABSTRACT
Theassociation between cnidariansandphotosynthetic dinoflagellates
within the genus Symbiodinium is a prevalent relationship in tropical
and subtropical marine environments. Although the diversity of
Symbiodinium provides a possible axis for niche diversification,
increased functional range and resilience to physical stressors such
as elevated temperature, how such diversity relates to the physiological
balance between autotrophy and heterotrophy of the host animal
remains unknown. Here, we experimentally show interspecific and
intraspecific variability of photosynthetic carbon fixation and
subsequent translocation by Symbiodinium to the model cnidarian
hostAiptasiapallida. Byusing aclonal anemone lineharboring different
species of Symbiodinium, we determined that symbiont identity
influences trophic plasticity through its density, capacity to fix carbon,
quantity of translocated carbon and ultimately the host’s capacity to
ingest and digest prey. Symbiont carbon translocation and host prey
ingestion were positively correlated across symbiont combinations that
consisted of different isoclonal lines ofSymbiodiniumminutum, while a
combination with type D4-5 Symbiodinium displayed lower carbon
translocation, and prey capture and digestion more similar to Aiptasia
lacking symbionts. The absence of a shift toward greater heterotrophy
when carbon translocation is low suggests that the metabolic demand
of feeding and digestion may overwhelm nutritional stores when
photosynthesis is reduced, and amends the possible role of animal
feeding in resistance toor recovery from the effects of climate change in
more obligate symbioses such as reef-building corals.

KEY WORDS: Symbiodinium, Functional diversity, Nutrition,
Photosynthesis

INTRODUCTION
Several animals thrive in oligotrophic environments, such as coral
reefs, by capitalizing on the photosynthetically fixed carbon of
endosymbiotic dinoflagellates (Venn et al., 2008). The association
between coral reef cnidarians and dinoflagellates within the genus
Symbiodinium represents one such key cosmopolitan symbiosis in
the oceans (Coffroth and Santos, 2005; Weis et al., 2008). While the
interspecific diversity and flexibility of Symbiodinium is well
known (Coffroth and Santos, 2005; Sampayo et al., 2008), the
intraspecific diversity as well as functional diversity of
Symbiodinium and subsequent consequences for the nutritional
balance of the cnidarian host remain unexplored. Symbiotic
cnidarians rely on autotrophy, through the photosynthetically

fixed carbon translocated by their symbionts, and heterotrophy,
by feeding on planktonic organisms (Falkowski et al., 1984). In
some cases, this trophic plasticity is critical for the resilience of
these symbiotic associations (Grottoli et al., 2006). A shifting
reliance from autotrophy to heterotrophy with light attenuation and
depth is usually observed within different coral species (Muscatine
et al., 1989; Anthony and Fabricius, 2000; Leal et al., 2014a).
Heterotrophy may also affect the photosynthetic performance of the
symbionts but have no consequence in terms of the total amount of
carbon translocated to the host (Davy and Cook, 2001). In addition,
autotrophy may be inversely related to heterotrophic contribution in
response to stress events, such as bleaching or notable changes in
light regime (Grottoli et al., 2006; Hughes and Grottoli, 2013;
Tremblay et al., 2014).

Symbiont genotypic diversity affects the quantity and quality of
translocated material to the host (Loram et al., 2007; Starzak et al.,
2014), which ultimately has physiological consequences for
symbiotic cnidarians and may contribute to the selective loss of
cnidarian diversity (Grottoli et al., 2014). However, how symbiont
diversity directly relates to the trophic plasticity of the holobiont (used
here to simply refer to the animal and photosynthetic symbionts)
remains unknown. Notably, no direct simultaneous comparisons exist
between autotrophic and heterotrophic performance that account for
symbiont identity in a genetically controlled host environment. Here,
we address the consequences of interspecific and intraspecific
variability of Symbiodinium and its relationship to the trophic
plasticity of the association as defined by the interaction of
autotrophic and heterotrophic performance. We hypothesized that
symbiotic associations with low carbon translocated to the animal
counterbalance such nutritional loss by increasing feeding and
digestion. We used the sea anemone Aiptasia pallida (Agassiz in
Verrill 1864) because of the considerable recent interest in using this
model organism to understand the physiology and co-evolution of
cnidarian–Symbiodinium symbioses (Weis et al., 2008; Thornhill
et al., 2013). An isoclonal line of this symbiotic sea anemone
A. pallida (line CC7) was used while individually hosting two
isoclonal lines (i.e. strains 1 and 2) of its naturally occurring clade B
symbiont (Symbiodinium minutum, ITS2 type B1), and a mixture of
one S. minutum with a different symbiont within the clade B lineage
(Symbiodinium psygmophilum, ITS2 type B2). A single isolate of
Symbiodinium sp. from the putatively thermally tolerant clade ‘D’
lineage (ITS2 typeD4-5) (Rowan, 2004; Lajeunesse et al., 2010a)was
also used with the CC7 host. Additionally, we tested a different A.
pallida line originally collected from Bermuda that hosted an
additional unique strain of S. minutum (strain 3). Photosynthetic
performance and carbon translocation by the symbionts to the host,
together with host prey capture and digestion, provided the proxies to
score nutritional plasticity of these symbioses. To gauge zooplankton
capture (ingestion) anddigestion alone, i.e. heterotrophic performance
(Leal et al., 2014b), the results of feeding assays were compared with
those from CC7 anemones lacking any symbionts (aposymbiotic).Received 15 October 2014; Accepted 8 January 2015
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RESULTS
Overall, photosynthesis was a good predictor of carbon
translocation to the animal when grouping all animal–
dinoflagellate combinations, and a significant positive correlation
was observed between the rate of carbon fixation (photosynthesis)
and carbon translocation to the animal when normalized to
Symbiodinium cell number (Fig. 1; Pearson correlation, N=25,
r=0.89, t=9.368, d.f.=23, P<0.001). However, when
comparing this pattern among different Symbiodinium genotypes,
significant differences were noted, particularly in the CC7
anemone hosting the D4-5 symbiont, where carbon translocated
per cell remained high across the range of photosynthesis (P<0.05;
supplementary material Table S1). Substantial differences
were observed in symbiont density (ANOVA, N=25, F=13.16,
P<0.001), particularly between strain 3 and the D4-5 symbiont,
which averaged 5057 and 1382 cells μg−1 protein, respectively
(Table 1). Nevertheless, photosynthetic performance of each
animal–dinoflagellate combination together with symbiont
density resulted in greater carbon translocated to the host
as Symbiodinium density increased (Pearson correlation, N=25,
r=0.75, t=5.4352, d.f.=23, P<0.001). Carbon translocation
significantly varied among symbiont genotypes (ANOVA,
N=25, F=4.006, P<0.05), particularly between strain 2 and
D4-5 symbionts, which averaged 1.09×10−7 and 3.14×10−7 μg
C cell−1 h−1, respectively (Table 1). The positive correlation
between symbiont density and carbon translocated was observed
among the two symbiont clades and anemone lines (i.e. clade B
versus D, and strain 3; supplementary material Table S1).
For all dinoflagellate–anemone combinations that contained

Symbiodinium clade B, including the other anemone line hosting
S. minutum (strain 3), there was a positive association between the
rate of carbon translocation and prey ingestion (Fig. 2A). However,

the D4-5 symbiosis had considerably lower rates of carbon
translocation relative to the high rate of prey ingestion.
Furthermore, significant interspecific and intraspecific differences
were observed for prey ingestion and prey DNA breakdown (a proxy
for prey degradation) among the different dinoflagellate–anemone
combinations (Fig. 2B,C). In particular, a pattern of high prey
ingestion rate and slow prey digestion was observed for
aposymbiotic individuals (lacking symbionts) and anemones
hosting the D4-5 symbiont (supplementary material Table S2).
This pattern was also noted for the other anemone line hosting a
different genotype of S. minutum (strain 3; Fig. 2B,C).

DISCUSSION
This study shows that the genetic identity of Symbiodinium
influences the nutritional plasticity of a cnidarian–dinoflagellate
symbiosis. The marked differences between host prey feeding and
digestion are associated with both photoautotrophic carbon
translocation and symbiont type, even at the symbiont sub-species
level. Notable differences in symbiont density and the resulting
variability in carbon translocation among Symbiodinium strains
within S. minutum alone underscore the functional diversity within
these dinoflagellates, the intraspecific variability within a single
Symbiodinium species, and that broad physiological generalizations
for entire clades of Symbiodinium (e.g. Fabina et al., 2013) are likely
not warranted.

We hypothesized that symbiotic associations with lower
autotrophic contribution (i.e. less carbon translocated to the animal)
would compensate for such losses by increasing feeding and digestion
(Grottoli et al., 2006; Ferrier-Pages̀ et al., 2011; Hughes and Grottoli,
2013). However, the results suggest that higher autotrophy is strongly
associatedwith increased heterotrophy, apart from theD4-5 symbiont,
which did not fit this pattern (Fig. 2A). The association with the D4-5
symbiont resulted in relatively low total carbon translocated but high
prey ingestion (Fig. 2A). Likewise, aposymbiotic anemones rely on
prey capture and ingestion efforts as their only source of nutrients
(Grottoli et al., 2006; Leal et al., 2013). Similar prey ingestion and
digestion between aposymbioticAiptasia and anemones hostingD4-5
symbionts (Fig. 2B,C) suggests that both groups of anemones increase
their heterotrophic efforts through prey capture and ingestion but
subsequent prey breakdown and digestion are relatively slow. While
the high prey gut content of these anemones (Fig. 2B)may justify their
slow digestion rates (supplementary material Table S2), the similarity
between the aposymbiotic and clade D-harboring anemones may
also be explained by the reduced autotrophic contribution of D4-5
symbionts to support host metabolism and, particularly, physiological
costs associated with prey digestion (Sebens, 2002). These results are
in contrast to those of Hiebert and Bingham (2012), who noted no
significant difference in the feeding ability of the temperate anemone
Anthopleura elegantissima while aposymbiotic or harboring
Symbiodinium or ‘zoochlorellae’. While not measured here, it is
also possible that symbiont type in Aiptasia affects the anemone’s
capacity to capture prey through morphological variations such as
tentacle number, size or cnida characteristics (Hiebert and Bingham,
2012).

Carbon fixation and translocation varied among Symbiodinium
genotypes (Table 1). However, the similar trends observed across
genotypes between photosynthesis and carbon translocation, and
between Symbiodinium density and carbon translocation suggest a
similar autotrophic mechanism among strains of the same species
(S. minutum) and regardless of anemone line. The results also
suggest that differences in Symbiodinium density affect the
congruence between high carbon fixation and translocation per
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Fig. 1. Relationship between maximal photosynthesis and carbon
translocation to the host. Photosynthesis and carbon translocation rates
were normalized to Symbiodinium cell number in individual Aiptasia pallida
hosting a single unique strain ofSymbiodiniumminutum (denoted by strain 1, 2
or 3), a ‘mixture’ of S. minutum strain 2 and Symbiodinium psygmophilum, or
D4-5 (N=5 per Symbiodinium genotype combination). Dashed lines
correspond to a linear fit for each strain. Symbioses with strains 1, 2, ‘mixture’
and D4-5 were all with the same clonal (CC7) anemone line.
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symbiont and total translocation to the host, as was observed
in the anemones harboring the D symbiont (Fig. 1, Table 1;
supplementary material Table S1). As a consequence of the low cell
density of the D4-5 symbiont, increased photosynthetic rates are
needed to translocate the same amount of carbon (Fig. 1). Symbiont
cell density is determined, in part, by the photosynthetic carbon flux
and individual metabolic requirements of symbionts, which vary
with symbiont type (Dubinsky and Berman-Frank, 2001; Starzak
et al., 2014). Although Davy and Cook (2001) have suggested that
low symbiont density promotes high photosynthetic rates as a
consequence of decreased competition for CO2, the results recorded
here show that symbioses supporting high Symbiodinium densities
may also display relatively high photosynthesis, such as strain 3
(Table 1). Moreover, notably different photosynthetic rates were
observed among closely related symbionts displaying similar cell
density (strain 1 and 2; Table 1). It is, therefore, likely that a
combination of the effects of symbiont type, symbiont density and
anemone line affect photosynthetic rates. Further, possible space
constraints or other as yet uncharacterized control elements of the
animal and cellular recognition signals between the partners may
play a defining role here (Schoenberg and Trench, 1980; Smith and
Muscatine, 1999). The effect of symbiont type and density may be
of particular importance in D4-5 symbionts, as low cell density is
probably affecting total carbon translocation to the host. While the
symbiosis with the D4-5 symbiont was stable, it may represent a
suboptimal symbiosis between host and symbiont lineages that have
not co-evolved. This may cause the strong relationship between

autotrophy and heterotrophy noted in the other holobionts and
across S. minutum genotypes to break down in this particular
symbiosis (Fig. 2A). If true, this symbiont may be an inefficient
competitor against homologous symbionts of Aiptasia such as
S. minutum. While not measured in this study, a difference in the
quality of translocated material between different symbiont types, as
already noted in another tropical anemone harboring different
clades of Symbiodinium (Loram et al., 2007), could also contribute
to this trend and certainly warrants further study.

The positive association between autotrophy and heterotrophy for
the different S. minutum strains and the anemone harboring the
mixed clade B assemblage may be due to two non-mutually
exclusive reasons: (1) increased feeding is the result of autotrophic
energy supply that is available to support metabolically demanding
heterotrophic processes, and (2) increased heterotrophic contribution is
critical to the assimilation of photosynthetic carbon into host biomass.
Both explanations are likely associated with respiratory demand. In
particular, prey digestion is an energy-demanding process that
increases metabolism (Sebens, 2002) and requires photosynthetically
fixed carbon to support animal respiration (Falkowski et al., 1984). If
autotrophic energy exceeds respiratory demand and heterotrophically
derived carbon is available, then autotrophic carbon may be combined
with heterotrophic energy and elements such as nitrogen and
phosphorous to build host biomass (Dubinsky and Jokiel, 1994;
Hoogenboom et al., 2010). This mechanism driven by respiratory
demand is supported by the differential fate of carbon in symbiotic
cnidarians: photosynthetically fixed carbon is quickly respired by the
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Fig. 2. Autotrophy and heterotrophy.
Autotrophy and heterotrophy were
measured in individuals (N=5) hosting
a single unique strain of S. minutum
(denoted by strain 1, 2 or 3), a mixture
of S. minutum (strain 2) and
S. psygmophilum, or Symbiodinium
D4-5. (A) Total carbon translocation
and prey ingestion rates (means±s.e.).
Apo denotes aposymbiotic anemones
(mean, dashed line; s.e., dotted lines).
(B) Prey ingestion rate (means±s.e.;
estimated through prey DNA content).
(C) Prey DNA breakdown at ingestion
(means±s.e.; 100% indicates no prey
DNA breakdown and 0% indicates total
prey DNA breakdown). Different
superscript letters in B and C indicate
significant differences among
genotypes (Tukey’s HSD, P<0.05).
Symbioses with strains 1, 2, ‘mixture’
and D4-5 and the aposymbiotic
animals were all with the same clonal
(CC7) anemone line.

Table 1. Photobiological characteristics of individual Aiptasia pallida hosting a single unique strain of Symbiodinium minutum, a mixture of
S. minutum and S. psygmophilum, or D4-5

Parameter Strain 1 Strain 2 Strain 3 Mixture D4-5

Symbiodinium cell density (cells μg−1 protein) 2778±958a 2544±328a,b 5057±827c 1883±522a,b 1382±116b

Photosynthesis (10−7 μg C cell−1 h−1) 7.92±1.17a,b 2.38±1.17c 5.96±2.17b,c 5.60±4.04b,c 8.54±2.69b

Carbon translocation (10−7 μg C cell−1 h−1) 2.49±0.38a,b 1.09±0.75b 2.02±0.84a,b 2.31±1.31a,b 3.14±0.58a

Total carbon translocation (10−4 μg C μg−1 protein h−1) 6.1±2.9AB 3.5±1.8a 11.0±4.4b 4.4±2.5a 5.1±4.1a,c

Strain, A. pallida hosting a single unique strain (1, 2, or 3) of Symbiodinium minutum; Mixture, S. minutum strain 2 and S. psygmophilum.
Data are means±s.d., N=5 per Symbiodinium genotype combination. Different superscript letters in the same row denote significant differences (P<0.05).
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animal host, whereas heterotrophically derived carbon is incorporated
more into animal biomass such as phospholipids, proteins and nucleic
acids (Bachar et al., 2007). The increased prey ingestion observed in
strain 3 thus follows the positive association between autotrophy and
heterotrophy (Fig. 2A). However, the reduced prey breakdown
observed for this same strain differs from that of anemones hosting
S. minutum, i.e. strain 1, 2 and mixture, and is similar to results
observed in aposymbiotic andD4-5 anemones (Fig. 2C). Thismaybea
consequence of physiological differences among different host genetic
lines. Different lines of anemones may have physiological differences
that slow down digestion or different morphological features, as
previously detailed, that increase prey capture rate (Hiebert and
Bingham, 2012). In contrast, as the same host line was used in all
anemones apart from strain 3, the increased prey ingestion with slower
digestion in aposymbiotic and D4-5 anemones is associated with the
absence of symbionts or the type of symbiont, respectively. This
suggests that heterotrophy is a partial energetic sink in itself due to
absent or insufficient carbon from autotrophy to support animal
metabolism. Such quantitative and qualitative differences may have
implications for energy budgets of the symbiosis. Further, widely used
models quantifying autotrophic and heterotrophic contributions to
animal respiration, known as CZAR (Muscatine et al., 1981) and
CHAR (Grottoli et al., 2006) respectively, may need to be adjusted to
account for different Symbiodinium types and the important metabolic
costs of feeding and digestion. Likewise, as isolating the respiratory
contribution from the algal and animal components within intact
symbioses is impossible, such models and their underlying
assumptions may not provide the necessary detail to tease apart such
differences as noted here.
In conclusion, heterotrophy is positively associated with

autotrophy, and the latter is significantly correlated with the
symbionts’ capacity to fix and translocate carbon in a density-
dependent manner. Physiological variability within a single
Symbiodinium species thus results in a change in the nutritional
status of the cnidarian host where both autotrophy and heterotrophy
play a pivotal role. The influence of symbiont type in contributing to
this trade-off in trophic patterns is especially important in the context
of coral bleaching events, as not all stable dinoflagellate/animal
symbioses are equally nutritionally advantageous to the animal.
Bleached corals may increase their feeding rates (Grottoli et al., 2006;
Hughes and Grottoli, 2013; Leal et al., 2014a) but may not take
advantage of suchopportunities if hostmetabolic processes associated
with prey digestion are affected by symbiont competency and
consequent autotrophic capacity. Symbiodinium functional diversity
that extends below the species level is thus critical to the nutritional
plasticity of cnidarian–dinoflagellate symbioses, influencing their
resilience and acclimation, and having ecological implications for the
success of these symbioses in marine environments.

MATERIALS AND METHODS
Animal models
Anemones consisted of a monoclonal line of aposymbiotic (Burriesci et al.,
2012) A. pallida (clone CC7) (provided by J. Pringle, Stanford University,
USA). Aposymbiotic anemones were kept in constant darkness over 2 years
in a closed system containing filtered seawater (FSW, 1 µm) and fed brine
shrimp weekly. Different combinations of A. pallida symbioses were
generated by infecting aposymbiotic anemones [similar to Schoenberg and
Trench (1980), minus the seawater extract of Artemia] with genetically
distinct cultures of Symbiodinium originating from various symbiotic
cnidarians (supplementary material Table S3). Two of the symbionts used
were recently described species of clade B Symbiodinium, S. minutum and
S. psygmophilum (Lajeunesse et al., 2012), while the third, D4-5, represents
a stress-tolerant clade of symbionts (Glynn et al., 2001; Lajeunesse et al.,

2010b). Three strains (designated as strains 1, 2 and 3) of the species
S. minutum (ITS2 type B1) were chosen because they are the dominant
symbiont of wild Aiptasia pallida (Thornhill et al., 2013). A mixture
of S. minutum (ITS2 type B1) with S. psygmophilum (ITS2 type B2) was
also included to investigate the effects of a mixed symbiont infection
between two species within the same clade. Another monoclonal line of
A. pallida, originally collected in Bermuda, was used as well and hosted one
of the unique strains of S. minutum (strain 3). All associations of A. pallida
symbiosis were stable for over 1 year and kept in flow-through systems
using FSW under normal growth conditions (26°C, ∼33‰, 150 μmol
photons m−2 s−1 photosynthetic photon flux, 12 h light–dark cycle) and fed
brine shrimp weekly (Leal et al., 2012). Associations with each symbiont’s
genotype were confirmed before experiments (see below). Aposymbiotic
anemones were confirmed to be free of dinoflagellates by periodic
microscopic examination as well as after shifting several anemones into
lighted incubators over several months.

Genetic identification of Symbiodinium types
One representative anemone from each of the five Symbiodinium
combinations was sampled from batch isoclonal cultures prior to the
experiment to confirm the genetic identity of the symbionts. Following the
heterotrophic feeding (see below), symbiont identity was again confirmed
for all five replicates per host–symbiont combination by extracting total
DNA from 100 μl of the anemone homogenate (LaJeunesse, 2002). The
partial 5.8S and ITS2 region of each sample was fingerprinted using PCR-
DGGE and the fingerprints characterized by Sanger sequencing of the
fingerprint (LaJeunesse, 2002). The symbionts, and their corresponding
ITS2 fingerprints, used in this study are detailed in supplementary material
Table S3. Addition diversity and resolution within the B1 ITS2 lineage that
better approximates species-level diversity can be gained by sequencing the
microsatellite locus B7Sym15 (Finney et al., 2010; Lajeunesse et al., 2012).
Therefore, the three strains used were characterized based on the flanker
region sequence of this locus to definitively place them within the species
S. minutum (matching GenBank accession no. JX263427). To further
elucidate the genetic diversity within S. minutum and characterize each
strain (i.e. multilocus genotype) used in this study, fragment analysis was
conducted on five microsatellite loci (B7Sym15, B7Sym34, B7Sym36,
CA4.86 and CA6.38) for the samples prior to the experiment
(supplementary material Table S4) (Santos and Coffroth, 2003; Pettay and
LaJeunesse, 2007). Two of these loci (B7Sym15 and B7Sym36) were
further used at the conclusion of the feeding experiment (see below) to
confirm the identity of the genetically distinct S. minutum strains and verify
that the symbioses had remained stable at both the ITS2 and strain level.
Lastly, to verify that the Aiptasia clones were genetically distinct, fragment
analysis was conducted on six microsatellite loci (AIPT6, AIPT8, AIPT14,
AIPT15, AIPT17 and AIPT20) developed for Aiptasia spp. Briefly,
microsatellite loci were developed from EST sequences of A. pallida
(Sunagawa et al., 2009) that were vector screened (using VecScreen and the
UniVec NCBI vector library) and assembled (CAP3) (Huang and Madan,
1999). Contigs and singlet sequences were screened for simple sequence
repeat (SSR) of di-, tri-, tetra-, penta- and hexa-nucleotides with more than
six repeats [WebSat (Martins et al., 2009)]. Primers were designed for
candidate loci [Primer3 (Rozen and Skaletsky, 2000)] and the loci screened
on A. pallida samples from the Florida Keys and Bermuda collected in 2011.
The two clones used in this study differed by at least one allele at all loci
except AIPT14, proving that the clonal lines are genetically different
(supplementary material Table S5).

Carbon uptake and translocation
Starved anemones of each Symbiodinium combination genotype were
placed in separate 7 ml scintillation vials containing 2 ml of seawater spiked
with 15 μl of 14C bicarbonate (specific activity 17 μCi μmol−1) following
previously described procedures (Davy and Cook, 2001). Five anemones
were used for each Symbiodinium combination and treatment. All vials were
then placed on an LED light-table (Cool White Cree XPG-R5; 150 μmol
photons m−2 s−1; 28°C) for 90 min. Two additional anemones from each
Symbiodinium combination were placed in vials with spiked seawater and
maintained in the dark for 90 min to account for carbon uptake in the dark.
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Three additional vials containing only the spiked seawater were also
included for measurement of total activity. After incubation, each anemone
was ground in 1 ml of seawater with a 1.5 ml Ten Broeck tissue grinder. A
100 μl sample of the resulting homogenate was removed and fixed with
10 μl of 1% glutaraldehyde (Acros Organics) and utilized for symbiont cell
counts (see below). The remaining homogenate was centrifuged at 5000 g
for 5 min to separate the host and symbiont portions. A 500 μl sample of the
host supernatant (HS) was removed and the remaining supernatant was
stored for downstream calculation of protein content. The symbiont pellet
(S) was then resuspended in 400 μl of FSW. Dissolved organic carbon
(DOC) released from the organism was also calculated by removing 200 μl
of seawater from each anemone-containing vial. All samples were acidified
using an equal volume of 2 mol l−1 HCL for 24 h, then dosed with 5 ml of
scintillation cocktail. After an additional 24 h period, radioactivity was
determined with a liquid scintillation counter (Beckman LS-6500).
Calculations were made using the mean specific activity (gC dpm−1),
which was estimated from the carbon content of 0.024 g C l−1 of seawater
(Davy and Cook, 2001). All samples were background and dark uptake
corrected. Translocation (T) was calculated as (DOC+HS) normalized
to host protein (see below). Photosynthesis (Pnet) was calculated as
(DOC+HS+S) normalized to total symbiont cells per anemone (see
below). The fraction of photosynthate translocated to the host was
calculated as (DOC+HS)/(DOC+HS+S).

Heterotrophic feeding
Aiptasia pallida individuals starved over 1 week were placed in 1.2 l
Plexiglas chambers with unidirectional flow (0.1 m s−1) (Leal et al., 2014b)
and each replicate consisted of a separate feeding chamber with one
individual each for each symbiont genotype tested and aposymbiotic
anemones. Newly hatched Artemia nauplii (24 h) were added at a final
concentration of 2 nauplii ml−1 to each chamber once the polyps were
expanded. After 15 min feeding time, anemones were sampled and
thoroughly rinsed three times in FSW to detach any prey that were
captured but not ingested. Five individuals were immediately flash-frozen
and stored at −80°C for molecular assessment of prey ingestion, and the
other five individuals were transferred to a prey-free environment where
they were allowed to digest ingested prey over 24 h before sampling as
previously described. Unfed A. pallida from each Symbiodinium
combination were also sampled prior to feeding incubations as negative
controls. Samples (N=5) of a known number of Artemia nauplii (varying
from 5 to 100 individuals) used in the experiment were also flash-frozen and
stored at −80°C for genomic DNA extraction.

Each individual stored during feeding incubations was thawed at room
temperature, ground with Ultra-Turrax (IKA, Staufen, Germany) in 1 ml of
FSW, and 300 μl transferred for genomic DNA extraction. The remaining
700 μl were centrifuged (5 min, 4°C, 8000 g) to pellet the symbionts. The
supernatant composed of the cnidarian host fraction was transferred to a new
tube and stored at −80°C for later protein quantification. The pellet was
re-suspended in 400 μl of FSW and 100 μl was aliquoted to a new tube with
10 μl of glutaraldehyde (1%, Acros Organics) and stored at 4°C for
determination of symbiont cell densities.

Total animal protein was assessed using Pierce BCA Protein Assay Kit
(Thermo Scientific, Rockford, IL, USA) following the manufacturer’s
instructions for microplate readings. Absorbance (562 nm) was measured
using a FluoStar Omega reader (BMG Labtech GmbH, Ortenberg,
Germany). Symbiont cell density was recorded by fluorescence
microscopy. Six independent replicate counts were performed for each
sample on a hemocytometer. Samples were photographed using a Nikon
microphot-FXA epifluorescence microscope (100× magnification).
Photographs were then analyzed by ImageJ software (Schneider et al.,
2012) with the analyze particles function.

Extraction of genomic DNA was performed using the MoBio
UltraClean Tissue and Cells DNA Isolation Kit (Carlsbad, CA, USA)
following the manufacturer’s instructions, apart from the bead beating
step, which used ∼100 μl of 0.5 mm glass beads for each extraction. After
extraction, genomic DNA was quantified using a Nanodrop 2000c
spectrophotometer (Thermo Scientific). Total genomic DNA from
Artemia nauplii samples was used to estimate the genomic DNA

content per individual prey item (Leal et al., 2014b). Prey DNA content
in each anemone sample was estimated through qPCR amplification of
Artemia DNA using the primers Af18s-1298F and Af18S-1373R (Leal
et al., 2014b). For each qPCR reaction, a dilution series of extracted
genomic DNA from Artemia nauplii was run as a quantitative standard.
The appropriate amount of template DNA in all assays was achieved using
1 μl of genomic DNA extract. qPCR reactions were performed using a
7500 RealTime PCR System (Applied Biosystems, Foster City, CA, USA)
in 96-well plates with each reaction well containing 5 μl of SensiMix
SYBR Hi-ROX reaction mix (Bioline, UK), 400 nmol l−1 of primers and
template genomic DNA. Amplification conditions included an initial
denaturation step (10 min, 95°C) followed by 40 amplification cycles
(15 s, 94°C; 30 s 60°C annealing/extension temperature). Each reaction
was followed by a melt-curve thermal profile from 60°C to 95°C to
evaluate specificity of the primers. All reactions were run in triplicate and
PCR-grade water was used as a template for negative control, as well as
genomic DNA from unfed anemones. Mean primer efficiency in all qPCR
reactions was 99.2±1.0%. To estimate prey DNA breakdown, all samples
were also run in qPCR reactions using primers Af18s-1298F and Af18S-
1422R (Leal et al., 2014b). As prey is digested, there is a decreasing
quantity of genomic DNAwith increasing amplicon size (Troedsson et al.,
2009). Thus, the ratio between prey DNA content obtained with the two
primer sets amplifying amplicon sizes of 73 and 112 bp will be 0 if all
prey DNA is degraded (no prey DNA detected using the primer set
amplifying the 112 bp amplicon) and 100 if no prey DNA is broken down
(equal amount of prey DNA detected using the two primer sets) (Leal
et al., 2014b). Percentage digestion rate was assessed through the ratio
between prey DNA content detected in samples collected after 24 h
digestion and immediately after ingestion. A digestion rate of 0% indicates
that no prey DNAwas detected after 24 h digestion, whereas 100% means
identical prey DNA contents are observed immediately after ingestion and
after 24 h digestion. Prey DNA content was normalized to animal protein.

Statistics
All measured parameters were compared among host–dinoflagellate
combinations with a one-way ANOVA. Tukey’s HSD post hoc test was
used when statistical differences were observed (P<0.05). Pearson’s
correlation was used to assess the relationship between different parameters
measured in the same Aiptasia individuals. Because of the necessarily
destructive nature of themethods, carbon translocation andprey ingestionwere
measured on different individuals; hence, some statistical comparisons were
not possible. Patterns of symbiont genotype and photosynthesis or symbiont
cell density on carbon translocation per cell or per unit host protein,
respectively, were tested using ANCOVA. Model residuals were checked to
verify assumptions of normality and homogeneity of variance, and
transformations were not required (Zuur et al., 2009). Statistical analyses
were performed with R (R Development Core Team, 2013).
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Table S1. Summary statistics for slopes from multiple linear regressions of carbon 

translocation as a function of photosynthesis or symbiont density. 

 

Carbon translocation 

(μg C cell-1 h-1) 
 

Total carbon translocation 

(μg C host protein-1 h-1) 

 F value P value   F value P value 

Photosynthesis (μC cell-1 

hour-1) 
388.89 < 0.001  

Cell density 

(cells μg-1 protein) 
35.93 < 0.001 

Symbiont genotype 6.81 < 0.01  Symbiont genotype 1.48 0.26 

Interaction 12.77 < 0.001  Interaction 1.76 0.19 

Residual d.f. 15   Residual d.f. 15  

       

 Slope (β) P value   Slope (β) P value 

(Intercept) 3.01 x 10-8 0.71  (Intercept) -2.29 x 10-4 0.57 

Cell density 2.76 x 10-1 < 0.05  Cell density 3.02 x 10-7 < 0.05 

Strain 2 -7.12 x 10-8 0.41  Strain 2 1.79 x 10-4 0.87 

Strain 3 -4.89 x 10-8 0.58  Strain 3 7.57 x 10-4 0.41 

Mixture 3.15 x 10-8 0.72  Mixture 4.37 x 10-4 0.49 

D4-5 2.73 x 10-7 < 0.01  D4-5 -3.13 x 10-4 0.53 

Cell density * Strain 2 3.57 x 10-1 < 0.05  Cell density * Strain 2 -1.44 x 10-7 0.74 

Cell density * Strain 3 9.39 x 10-2 0.42  Cell density * Strain 3 -1.93 x 10-7 0.37 

Cell density * Mixture 1.28 x 10-2 0.92  Cell density * Mixture -2.39 x 10-7 0.42 

Cell density * D4-5 -2.36 x 10-1 < 0.05  Cell density * D4-5 2.71 x 10-7 0.16 
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Table S2. Prey digestion of individuals hosting a single unique genotype of 

Symbiodinium minutum (strain 1, 2 and 3), a mixture of one genotype of S. minutum 

and S. psygmophilum (mixture) or Symbiodinium D4-5, and aposymbiotic anemones. 

Prey digestion Strain 1 Strain 2 Strain 3 Mixture D4-5 Aposymbiotic 
Artemia DNA 

present 24h 

after ingestion 

(%) 

0.6 0.2 3.7 0.8 2.4 8.0 

Prey digestion is estimated as the ratio between prey DNA content 24 h after ingestion and 

immediately after ingestion (n = 5; 100% denotes no prey digestion and 0% total prey digestion). 

 

 

 

 

Table S3. Culture name, cnidarian host from which the symbionts were obtained and 

corresponding ITS2 Genbank numbers for the different symbiont strains. 

Symbiont Culture name Host Corresponding ITS2 Genbank # 
Symbiodinium minutum 

strain 1 

FLAp2 Aiptasia pallida AF333511 

Symbiodinium minutum 

strain 2 

Unknown Unknown AF333511 

Symbiodinium minutum 

strain 3 

N/A Aiptasia pallida AF333511 

Symbiodinium 

psygmophilum 

Unknown Unknown AF333512 

Symbiodinium clade 

D4-5 

Ap31 Unknown anemone AF499802 (4) 
EU812743 (5) 
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Table S4. Alleles for the five Symbiodinium clade B microsatellites used to resolve 

strain diversity. 

Strain or MLG 
Microsatellite Loci 

B7Sym15 B7Sym34 BySym36 CA4.86 CA6.38 
Symbiodinium 

minutum strain 1 

263 281 196 182 101 

Symbiodinium 

minutum strain 2 

263 267 163 199 103 

Symbiodinium 

minutum strain 3 

259 271 169 182 101 

Symbiodinium 

minutum + S. 

psygmophiluma 

263 267 163 199 103 

a Microsatellites loci for the S. minutum strain present in the mixture with S. 
psygmophilum. 

 

 

Table S5. Alleles for the six Aiptasia microsatellites used to resolve clone diversity. 

Aiptasia clone 
Microsatellite Loci 

AIPT6 AIPT8 AIPT14 AIPT15 AIPT17 AIPT20 

CC7 
302 293 188 319 292 334 

302 295 191 322 292 334 

Bermudas 
302 293 188 319 294 339 

318 293 191 319 296 341 
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