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Fishing for drifts: detecting buoyancy changes of a top marine
predator using a step-wise filtering method
Samantha Alex Gordine*, Michael Fedak and Lars Boehme

ABSTRACT
In southern elephant seals (Mirounga leonina), fasting- and foraging-
related fluctuations in body composition are reflected by buoyancy
changes. Such buoyancy changes can be monitored by measuring
changes in the rate at which a seal drifts passively through the water
column, i.e. when all active swimming motion ceases. Here, we
present an improved knowledge-based method for detecting
buoyancy changes from compressed and abstracted dive profiles
received through telemetry. By step-wise filtering of the dive data, the
developed algorithm identifies fragments of dives that correspond to
times when animals drift. In the dive records of 11 southern elephant
seals from South Georgia, this filtering method identified 0.8–2.2% of
all dives as drift dives, indicating large individual variation in drift
diving behaviour. The obtained drift rate time series exhibit that, at the
beginning of each migration, all individuals were strongly negatively
buoyant. Over the following 75–150 days, the buoyancy of all
individuals peaked close to or at neutral buoyancy, indicative of a
seal’s foraging success. Independent verification with visually
inspected detailed high-resolution dive data confirmed that this
method is capable of reliably detecting buoyancy changes in the dive
records of drift diving species using abstracted data. This also affirms
that abstracted dive profiles convey the geometric shape of drift dives
in sufficient detail for them to be identified. Further, it suggests that,
using this step-wise filtering method, buoyancy changes could be
detected even in old datasets with compressed dive information, for
which conventional drift dive classification previously failed.

KEYWORDS: Body condition, Marine mammal, Elephant seal, Body
composition, Drift diving, Telemetry, Foraging ecology, Diving
behaviour

INTRODUCTION
For marine divers, buoyancy is incredibly important for maintaining
position at depth and buoyancy changes have consequences for the
energetics of swimming. Changes in an individual’s buoyancy, and
hence changes in the costs of locomotion, are likely to result in
behavioural adjustments that re-establish cost-efficient locomotion
and effective foraging. For example, some species actively
manipulate their buoyancy by changing the air volume in their
lungs or pelage (Kooyman, 1973; Lovvorn and Jones, 1991;
Minamikawa et al., 1997), while others adapt their diving behaviour

to optimally use their own buoyancy (Beck et al., 2000; Elliott et al.,
2007; Watanabe et al., 2006; Webb et al., 1998).

However, buoyancy is also determined by body composition
(Beck et al., 2000; Biuw et al., 2003; Lovvorn and Jones, 1991;
Webb et al., 1998), which changes markedly because fasting,
growth and/or successful foraging alter the ratio of high-density lean
and low-density lipid tissue (Beck et al., 2000; Biuw et al., 2003;
Fedak et al., 1994; Lovvorn and Jones, 1991; Webb et al., 1998).
Detecting buoyancy changes thus can provide crucial information
for monitoring the well-being of far-ranging marine mammals such
as southern elephant seals (Mirounga leonina Linnaeus 1758) and
for investigating buoyancy-related changes in their diving
behaviour.

Elephant seals spend most of their life at sea, diving for about
90% of the time once they leave land after breeding or moulting
(Biuw et al., 2003; Costa, 1993). They regularly perform dives
containing inactive phases during which they are thought to rest or
sleep whilst passively drifting to depths of 550 m. Such dives,
during which the animal stops swimming actively and drifts
passively in the water column, are known as drift dives. The rate at
which an individual drifts up or down in the water column reflects
its buoyancy (Webb et al., 1998). Identifying drift dives and
examining drift rate changes thus enables us to monitor buoyancy
changes and to indirectly measure changes in body composition and
successful resource acquisition (Biuw et al., 2003, 2007; Crocker
et al., 1997).

Various methodologies for drift dive identification rely on visual
dive classification (Hassrick et al., 2007; Kuhn et al., 2009; Le
Boeuf et al., 1992; Page et al., 2005), the use of statistics-based
identification algorithms (Miller et al., 2012; Robinson et al., 2007;
Thums et al., 2008a) or the application of knowledge-based
selection criteria (Biuw et al., 2003; Guinet et al., 2014; Mitani
et al., 2010). All three approaches present operational difficulties.
Visual dive classification is time consuming and subjective; the
implementation of automated search algorithms is to some degree
subjective and requires knowledge of the underlying statistical
programming; existing knowledge-based methods – all based on
Biuw et al. (2003) – have not been revised or modified in light of
current knowledge of drift diving behaviour or the frequent
implementation of the broken-stick model for dive abstraction
(Fedak et al., 2002; Photopoulou et al., 2015).

Advances in telemetry, in particular the use of accelerometers to
monitor thrusting and attitude during swimming, improve drift dive
identification. However, to obtain these data, either high-bandwidth
data transmission or recovery of instruments with large memories is
required – both of which provide obstacles in studying animals that
only infrequently surface or return to shore. Therefore, data
compression and abstraction currently remains the only viable
alternative for animal-borne telemetry.

Here, we present a new method based on filtering broken-stick
abstracted dive data (Fedak et al., 2001) for detecting buoyancyReceived 25 May 2015; Accepted 4 October 2015
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changes. By carefully considering current knowledge of drift diving
behaviour, previously published knowledge-based criteria were
revised and new selection criteria were devised to inform this
filtering method. We used a combination of telemetered and
recorded dive data to test and verify this step-wise filtering method.
By testing the method on abstracted and compressed telemetry dive
data attained via the low bandwidth Argos System (Argos, 2011),
drift rate information was obtained for 11 southern elephant seals
from South Georgia, South Atlantic. For five southern elephant
seals from the Kerguelen Islands, the results of applying the step-
wise filtering method were verified with visual inspection of
additional recorded high-resolution dive data.

MATERIALS AND METHODS
Logger deployments
Satellite-relay data loggers [SRDLs; Sea Mammal Research Unit (SMRU)
Instrumentation, St Andrews, UK] were deployed on 12 southern elephant
seals on the island of South Georgia, South Atlantic, in the Austral summer
of 2009 as part of the SAVEX project (http://www.st-andrews.ac.uk/~savex)
and the data from 11 seals were used for further analysis. Additionally, five
seals were equipped with fluorometry-conductivity–temperature–depth
satellite-relay data loggers (Fluoro-CTD-SRDLs; SMRU Instrumentation)
on the Kerguelen Islands in the Austral summers of 2011 and 2012 and in
the Austral winter of 2012 as part of the MEMO Observatory (http://www.
insu.cnrs.fr/node/4125).

The capture and tagging protocols of the UK deployments on South
Georgia were reviewed and approved by the University Teaching and
Research Ethics Committee (UTREC) and the Animal Welfare and Ethics
Committee (AWEC) as part of our ethical review process and were
scrutinised under the UK Animals (Scientific Procedures) Act 1986.
Capture and deployment of satellite transmitters were carried out by
experienced personnel with UK Animals (Scientific Procedures) Act 1986
Personal Licences. The capture and tagging of the French deployments on
the Kerguelen Islands were undertaken with approval from the IPEV
(Institut Polaire Français Paul Emile Victor) and TAAF (Terres Australes et
Antarctiques Francaises) animal ethics committee.

The SRDLs recorded high-resolution time–depth profiles at 2 s
intervals. These detailed time–depth profiles were then abstracted using
a broken-stick algorithm on-board the SRDLs which reduced the data to
four at-depth and two surface dive inflection points (Fedak et al., 2001;
Photopolou, 2012). The abstracted data were then compressed and relayed
via the Argos satellite system (Argos, 2011; Boehme et al., 2009; Fedak
et al., 2002). Additionally, the detailed high-resolution data stored on-
board the Fluoro-CTD-SRDLs of the five Kerguelen seals were recovered
upon recapturing the animals.

Data handling
Below, we present a filtering method that automatically searched through all
abstracted time–depth profiles to identify dive profiles that included a drift
fragment. To seewhether the rate at which the individual drifts changed over
time, the drift rates of all identified drift fragments were extracted as a time
series. For seals from South Georgia, these drift rate time series were further
investigated with regard to drift dive characteristics, behavioural changes
and emergent buoyancy changes. The drift rate time series of the five
southern elephant seals from the Kerguelen Islands were solely used for the
independent verification of the developed step-wise filtering method. The
relevant data analysis was carried out using the programming software R (R-
Core-Team, 2013), unless stated otherwise.

Data preparation for step-wise filtering
Dive profiles with dive duration recorded as zero were removed. Each dive
profile was subdivided into five dive fragments (Fig. 1) using the six
inflection points provided by the broken-stick algorithm. Dive fragments
described by two consecutive inflection points of the same recorded depth
were excluded to prevent flat-bottomed dives from being misidentified as
drift dives. The first and last dive fragments of each profile, representing
descents and ascents, were excluded.

The vertical speed of each fragment was calculated by dividing the
difference in depth by the difference in time of the two inflection points
describing the fragment. All speeds referred to in this study are vertical
speeds, with an expected error of <5%, based on the accuracy of the SRDL
sensors. The percentage duration of each dive fragment was calculated by
dividing the duration of a given fragment by the total dive duration. Tags
were collecting data using GMT (Greenwich Mean Time) and local time (lt)
was calculated based on the specific longitude at that time.

Step-wise filtering method using selection criteria
The automated detection of drift dives previously used criteria such as the
proportional length of a drift fragment to identify drift dives (Biuw et al.,
2003; Mitani et al., 2010; Onoufriou, 2012). Recent advances in drift diving
analysis enabled the revision of existing selection criteria in addition to the
formulation of new selection criteria to refine drift dive analysis. The step-
wise application of the seven selection criteria outlined below discarded
dive fragments that did not fulfil all the chosen selection criteria. Dive
fragments that remained after filtering were considered to be drift fragments
and their vertical speeds represent drift rates.

The selection criteria used by the step-wise filtering method were as
follows. (1) Only recently weaned elephant seal pups (Biuw et al., 2003) or
females during late gestation (Crocker et al., 1997) are known to become
positively buoyant. A priori, we do not expect seals to reach positive
buoyancy. Based on this and the minimum drift rates found by Bailleul et al.
(2007), fragments with vertical speeds between −0.05 and −0.6 m s−1

(Dragon et al., 2012; Onoufriou, 2012) were thus retained.
(2) Elephant seals typically begin to drift at depths between 65 and 117 m

(Biuw et al., 2003), with 95% of all drifts occurring below 100 m (Bailleul
et al., 2007). Critical evaluation of the maximum depth of drift dives (Aoki
et al., 2011; Crocker et al., 1997) attests that the majority of drifts are
terminated at depths shallower than 550 m. Shallow dives, during which
residual air in the lungs has a variable influence on buoyancy, were excluded
(Biuw et al., 2003). The buoyant force of residual air becomes negligible
below a depth of 100 m because the lungs of elephant seals are then
collapsed by the surrounding pressure (Kooyman and Ponganis, 1998).
Therefore, only dive fragments starting and ending in the depth range of
100–550 m were retained.

(3) Varying information is available on the length of a drift fragment.
Crocker et al. (1997) recorded mean lengths of approximately 12 min for
early gestation and approximately 13 min for late gestation female elephant
seals. Aoki et al. (2011) found that, on average, drift fragments lasted for
approximately 7 min. To determine a minimum drift length, we therefore
chose a statistics-based approach. (i) The data of each individual were
divided into subsamples according to the length of dive fragments. Thus, the
data in each subsample only contained dive fragments that were longer than
a certain fragment length, e.g. longer than 1 min, or 2 min, or 3 min, etc. (ii)
The vertical speeds of the dive fragments in each subsample were plotted
against time (see Fig. S1). (iii) The smooth.spline function (Venables and
Ripley, 1994), as implemented in the R package (Ihaka and Gentleman,
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Fig. 1. A reconstructed broken-stick abstracted time–depth profile of a
typical drift dive. The black circles indicate the two at-surface and four at-
depth inflection points chosen by the broken-stick algorithm on-board the
satellite-relay data loggers (SRDLs). The segment between two successive
inflection points describes each dive fragment, with five fragments per dive
profile in total. In this example, the second dive fragment is the drift fragment of
this dive profile.
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1996), was fitted to these time series of vertical speeds for each subsample
(see Fig. S1). (iv) For these splines, the coefficients of determination (R2)
were calculated (Fig. 2) to assess the fit of the spline to the raw data points of
each subsample. (v) The R2 values of all splines from all individuals were
examined for the most substantial improvement of fit, i.e. the inflection
point (Fig. 2). The first inflection point was obtained for splines fitted to
dive fragments longer than 8 min, whilst the first maximum was attained for
dive fragments longer than 10 min (Fig. 2). Overall, the longer the dive
fragments, the better the fit of the splines. However, there was also a trade-
off between improvement of fit and the number of dive fragments that were
retained. When the other six selection criteria were applied, dive fragments
longer than 8 min were most frequent (see Fig. S2). Considering this, the
minimum fragment length was chosen to be greater than 8 min.

(4) The purpose of a drift dive is to rest or process food whilst drifting
passively. Thus, the drift fragment should consume most of the dive time.
Therefore, all potential drift fragments shorter than 40% of the total dive
duration were discarded (Andersen et al., 2014; Biuw et al., 2003;
Onoufriou, 2012).

(5) After passively drifting at depth for extended periods, seals must
surface again to breathe. Therefore, the dive fragment after the potential drift

fragment should have a vertical speed that is indicative of active, upward
swimming. Thus, dive fragments with subsequent fragments below
0.2 m s−1 were discarded (Richard et al., 2014).

(6) Drift dives occur more often during the night (Andersen et al., 2014;
Dragon et al., 2012; Le Boeuf et al., 2000). Elephant seals drift dive most
frequently between 05:00 lt and 07:00 lt in the morning, and least often
between 14:00 lt and 19:00 lt (Crocker et al., 1997). Thus, taking a
conservative approach, dive fragments occurring between 13:30 lt and
19:30 lt were discarded.

(7) An elephant seal swims actively upon descent before beginning its
drift. The vertical speed of the dive fragment preceding the potential drift
fragment should reflect this. Thus, dive fragments with preceding fragments
above −0.6 m s−1 were discarded.

Spline fitting
We recommend fitting a spline or regression line to the drift rate time series
to study the trend in buoyancy change and to estimate changes in drift rate by
predicting representative daily values.

A range of spline-fitting algorithms and non-parametric regression
methods [smooth.spline (Venables and Ripley, 1994); loess (Cleveland
et al., 1992); gam (Hastie, 1991)] were tested by visually inspecting which
splines fitted the trend in individual drift rate time series best and which
spline-generating method most frequently provided the closest fit overall
without changing fitting parameters for each time series. Subsequently, we
chose constrained beta splines (cobs) (Ng and Maechler, 2007), as these
splines consistently provided the best fit.

For the cobs algorithms, the constraint ‘none’ was chosen, because time
series of single migrations do not provide enough data to demonstrate
periodicity. The maximum number of knots was set to 14 to prevent over-
fitting and to permit any biologically meaningful changes in drift rate
presumable over a week to be detected (Biuw et al., 2003). Knots were
generated using the quantile method and the desired quantile level that
provided the best results was 20%. Penalty parameters did not improve the
fit. When dive records continued to be recorded after an extended haul-out
period, separate splines were generated for the pre- and post-haul-out
periods.

Independent verification
The step-wise filtering method was applied to the broken-stick abstracted
time–depth profiles of the five southern elephant seals from the Kerguelen
Islands, which were received by telemetry. The detailed high-resolution
time–depth profiles (sampled at 2 s intervals) of these broken-stick
abstracted dive profiles were visually inspected for drift dives, using
MAMVIS (Fedak et al., 1996). Drift dives undetected by the step-wise
filtering method and dives falsely identified as drift dives by the filtering
method were counted. The drift rates of correctly identified drift dives were
re-measured by inspecting the relevant drift phase of the detailed high-
resolution dive profile in MAMVIS.

A statistical algorithm adapted from Dragon et al. (2012) was run using
MATLAB (The MathWorks Inc., 2011) to create a detailed drift rate time
series for each animal. For this, the detailed time–depth data recorded at 2 s
intervals were down-sampled to 40 s interval data. The mean vertical speed
and standard deviation within an 8 min sliding window were calculated for
data below a depth of 50 m. Drift phases were detected as phases with a low
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Fig. 2. Boxplot of coefficients of determination (R2) for determining the
minimum length of a drift fragment. Smooth splines were fitted to the time
traces of vertical speeds using the data in each subsample (see Materials and
methods). The dive fragments in each subsample were longer than a pre-
determined length (xmin) and were derived from one of the 11 individuals. For
each fitted spline, R2 was calculated as R2=1−(residual sum of squares/total
sum of squares). This boxplot summarises the splines’ goodness of fit. The fit
improves starkly for splines fitted to vertical speed time series of fragments
longer than 8 min.

Table 1. Correlation between the time series obtained by using the step-wise filtering method and the visually confirmed drift rate time series

Seal ID
Filtered time series
ARIMA (p,d,q)

Visually confirmed time
series ARIMA (p,d,q) Correlation coefficient (r) P-value

ft12-F1-12 (3,1,0) (0,1,1) 0.365 <0.001
ft12-F2-12 (0,0,0) (0,0,0) 0.149 <0.001
ft12-F3-12 (0,1,1) (0,1,1) 0.142 <0.001
ft07-cy28-11 (0,1,2) (0,1,1) 0.362 <0.001
ft11-cy30b-12 (5,1,0) (0,1,5) 0.269 <0.001

The ARIMAmodel parameters for each time series are summarised, where p is the number of autoregressive terms, d is the number of non-seasonal differences
required for stationarity and q is the number of lagged forecast errors in the prediction equation. Each time series was differenced d times. The Pearson product-
moment correlation coefficient (r) demonstrates significant correlation between the five sets of stationary time series.
P-values were calculated on the basis of a simulated null-distribution (see Materials and methods).

3818

RESEARCH ARTICLE Journal of Experimental Biology (2015) 218, 3816-3824 doi:10.1242/jeb.118109

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.118109/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.118109/-/DC1


absolute mean vertical speed (<1 m s−1) and a low standard deviation
(<0.05 m s−1 for seals ft12-F1-12, ft12-F4-12 and ft07-cy28-11;
<0.075 m s−1 for seal ft12-F2-12; <0.1 m s−1 for seal ft11-cy30b-12).

Time series comparison
To reduce the high daily variation in drift rate, the mean daily drift rate was
computed for each time series.

The drift rate time series are non-stationary because the drift rates in each
time series are strongly auto-correlated. To ensure that the correlation
between the visually confirmed and the filtered time series was not an
artefact of auto-correlation, autoregressive integrated moving average
(ARIMA) models were fitted to each daily mean drift rate time series
using automated parameter selection (Hyndman and Khandakar, 2008).
ARIMAmodels forecast time series that are made stationary by differencing
so that the time series’ autocorrelations remain constant over time (Pfaff,
2008).

The time series were differenced one lag at a time by as many differencing
steps as the automatic ARIMA parameter selection suggested were
necessary to make the time series stationary (Pfaff, 2008). For each
individual, this rendered a set of two forecasted time series: one based on the
filtered drift rate time series and a corresponding one based on the visually
inspected drift rate time series. Within each set, the corresponding
difference-stationary time series were statistically compared using
Pearson’s product moment correlation test (Table 1).

Further, a null-correlation distribution was generated by using the
automatically selected ARIMA model parameters to simulate sets of time
series with the same known autocorrelation structure. For each individual,
this rendered a set comprising 1000 simulated time series based on the
model parameters of the filtered time series and 1000 simulated time series
based on the model parameters of the corresponding visually confirmed
time series. Again, within each set, the simulated time series were compared
using Pearson’s product moment correlation test, generating a null-
distribution of correlation coefficients. This distribution was then used to
calculate the probability of obtaining the observed correlation coefficient by
chance (P-value) (Table 1).

RESULTS
The dive records collected by the 11 seals from South Georgia
covered several months so that sufficiently long drift rate time series
could be obtained for all individuals. The average trip duration was
212±87 days (mean±s.d.). A total of 59,240 complete dive profiles
with five dive fragments each were considered. After filtering, 2322
dive fragments remained that met all chosen selection criteria. This
corresponds to 0.8–2.2% of an individual’s dive fragments being
selected as drift fragments by the filtering method (Table 2).
Filtering the data by step-wise addition of selection criteria

decreased the fraction of dive fragments that were retained (Fig. 3).
The percentage of dive fragments that were discarded by application
of each selection criterion (Table 3) and the total number of drift
fragments identified for each seal depended on their individual
diving behaviour.
The frequency distribution of the filtered data was non-normal or

skewed for most dive variables. Hence the median and inter-quartile
range (IQR) are reported as summary statistics.

During the 2322 drift fragments, seals descended whilst drifting
with an average drift rate of −0.17 m s−1 (IQR: −0.26 to
−0.10 m s−1). Within the range of the relevant selection criterion,
the selected drift fragments, during which seals descended, were
terminated at depths of 391.3 m (IQR: 441.3 to 336.3 m). Most drift
fragments lasted for 811.8 s (IQR: 637.6 to 1037.3 s) and drift
fragments comprised 51.6% of the total dive duration (IQR: 45.2%
to 58.1%). The highest occurrence of drift fragments was between
05:00 lt and 06:00 lt.

The time series of drift rates (Fig. 4) display strong fluctuations in
buoyancy for each individual. At the beginning of the post-moult
migration, the drift rate of most individuals was between −0.3 and
−0.4 m s−1. Within 75–150 days of departure from South Georgia,
all individuals reached a peak in buoyancy. Thereafter, their
buoyancy fluctuated around near-neutral buoyancy until hauling
out. For three female individuals (ID 26629, 92575 and 92574), the
extracted drift rate time series included both the post-moult and part
of the post-lactation migration. Comparison of the number of drift
dives identified in the first 28 days of each respective migration
revealed that seal 26629 performed significantly more drift dives
during the post-moult (N=56) than during the post-lactation

Table 2. Details of the 11 southern elephant seals for which drift rate time series were obtained using the step-wise filtering method

Seal ID 92572 92571 26629 92575 92573 92569 22496 92576 92570 92574 92567

Sex f f f f f f f f f f m
Record duration (days) 132 231 318 295 52 156 229 216 119 304 285
No. of dive fragments 9565 16,516 23,740 18,668 5373 12,638 13,255 18,933 12,836 19,574 21,494
No. of drift fragments 138 155 236 316 114 188 160 267 175 166 407
% Remaining 1.4 0.9 1.0 1.7 2.1 1.5 1.2 1.4 1.4 0.8 1.9

The record duration is the number of days between departure from South Georgia post-moult and the last day on which dive profiles were received. The number of
dive fragments considered for filtering and the number of extracted drift fragments after filtering are detailed for each individual. By step-wise application of each
selection criterion, the dive data were filtered until a small percentage of dive fragments remained that met all selection criteria (% remaining).
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Fig. 3. Histogram of vertical speed of dive fragments that remained after
step-wise application of selection criteria. Step-wise application of all
filters removed dive fragments that did not comply with the applied criterion;
a small percentage of drift fragments remained. Each colour corresponds to
the effect of applying one filter. If a filter was applied, the corresponding shaded
section was removed.
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migration (N=36; χ2=4.348, d.f.=1, P=0.037). Contrarily, seal
92574 performed more drift dives during the post-lactation
migration (N=65) than during the post-moult (N=39; χ2=6.5,
d.f.=1, P=0.011). While during the post-lactation migration of seal
92575 more drift dives were identified (N=52) than during the post-
moult migration (N=37), the difference was not statistically
significant (χ2=2.528, d.f.=1, P=0.112).

Independent verification
For seals from the Kerguelen deployments, the filtering method
selected between 2.2% and 3.9% of an individual’s broken-stick
abstracted dive fragments as drift fragments. Between 60% and
81% of these selected drift fragments could be visually confirmed
as being true drift fragments (Table 4). The manually re-measured
drift rates displayed similar daily variation to the drift rates
extracted from broken-stick abstracted dive fragments (Fig. 5).
The time series obtained with the statistical algorithm presented
more noise than the other two methods. Yet, aside from the noise,

the observed temporal patterns in each individual’s set of drift
rate time series were overall coherent. Further, the drift rate time
series obtained with the filtering method and the visually
confirmed time series were all significantly positively correlated
(Table 1).

DISCUSSION
In this study, an improved knowledge-based method for detecting
buoyancy changes was demonstrated by filtering abstracted dive
profiles of 11 elephant seals from South Georgia for drift
fragments. The step-wise filtering method was independently
verified using detailed high-resolution data of five additional
elephant seals from the Kerguelen Islands for which the
contemporaneous abstracted data telemetered via Argos were
available. The selected drift fragments rendered time series of drift
rates that displayed marked buoyancy changes during the
migrations. The fitted splines further emphasise the trends in
buoyancy change.

Table 3. The percentage of dive fragments that remained after a single selection criterion was applied

Criterion: 1 2 3 4 5 6 7

All 11 seals 32.2% 68.3% 23.6% 12.7% 59.8% 74.9% 44.4%
Seal ID
92575 33.5% 78.7% 29.5% 16.9% 58.9% 74.2% 43.2%
92569 33.1% 75.4% 20.3% 11.8% 60.4% 75.7% 45.6%
92567 29.4% 74.1% 29.5% 19.7% 60.9% 71.9% 44.3%

The percentage of dive fragments that were retained after applying only one of the seven selection criteria (following the order 1 to 7 as outlined in Materials and
methods) is given. The behaviour of each individual influenced howmany dive fragments were discarded by a given selection criterion, as is exemplified for three
individuals (seal ID 92575, 92569 and 92567).
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Fig. 4. Time traces of extracted drift rates for each individual. Each black circle represents a drift rate of a selected drift fragment, while the blue lines represent
constrained beta splines (cobs) fitted with confidence intervals in grey (seeMaterials andmethods). For three individuals (seal ID 26629, 92575 and 92574), parts
of the post-breeding migrations were also recorded. The buoyancy of these individuals drastically decreased post-breeding.
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The broken-stick abstraction of detailed dive data enables
persistent transmission of long time series via telemetry, which
capturesmore variation than short high-resolution time series.Whilst
for the detection of other behavioural modes, such as foraging, less
abstraction and more broken-stick points may be required (Heerah
et al., 2014), the minimum of four inflection points sufficiently
conveys the geometric shape (Fedak et al., 2001) to depict enough

detail for abstracted drift dive profiles to be adequately represented
and identifiable. Despite the reduced resolution of the abstracted dive
data, the time series obtained with the filtering method depict the
buoyancy changes almost as well as the detailed high-resolution time
series, indicating that the broken-stick algorithm is able to accurately
abstract drift dives because of the lowvariability in change in depth of
the bottom phase (Photopoulou et al., 2015).

Table 4. The accuracy of the automated step-wise filtering method compared with visual dive classification

Seal ID
Trip duration
(days)

Total abstracted dive
profiles considered

Unidentified drift
fragments

Filtered drift
fragments

Correctly identified by
the filtering method

ft12-F1-12 83 3002 6.5% 3.9% 77%
ft12-F2-12 67 2286 3.0% 2.8% 60%
ft12-F3-12 72 2695 3.0% 3.4% 72%
ft07-cy28-11 227 2670 2.1% 3.2% 67%
ft11-cy30b-12 226 15,374 2.1% 2.2% 81%

The trip duration is the number of days between departure from the Kerguelen Islands and the last day on which dive profiles were received. Summarised are the
percentage of drift dives that could be visually identified, but remained unidentified by the filtering method; the percentage of dive fragments selected by the
filtering method; and the percentage of dive fragments that were correctly identified by the filtering method and visually confirmed as true drift fragments.
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Fig. 5. Time traces of drift rates used for independent verification. Each column displays for each individual four corresponding drift rate time series. In the
‘filtered’ row, the drift rate time series illustrated by light blue points were obtained with the step-wise filtering method. Drift rates that were visually confirmed and
measured using detailed high-resolution data are displayed by dark blue points in the row labelled ‘visual’. In the ‘statistical’ row, light blue lines represent drift rates
obtained with a statistical detection algorithm adapted from Dragon et al. (2012) (see Materials and methods). The last row displays the drift rates obtained by all
three methods together, where light blue points depict the filtered time series, dark blue points represent the visual time series and light blue lines show the
statistical time series. Strong coherence in the filtered and visual time series is apparent for every individual and the trends over time are consistent with those of
the unsmoothed statistical time series. This is further illustrated by the overlap of points and lines in the combined time series.
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Nevertheless, there was noise in the drift rate time series, which
possibly resulted from inexact time and depth recordings after the
compression was applied, which propagated through the data upon
calculating the vertical speeds. Data binning and compression
before satellite transmission of the data could also have caused
noise. Additionally, the broken-stick algorithm is unable to capture
instantaneous changes in vertical speed. Therefore, parts of the
deceleration and acceleration phases immediately before or after the
drift phase are often included in the abstracted drift fragment,
leading to an over- or under-estimation of the true drift rate.
The detailed high-resolution time series obtained with the

statistical method appeared to be noisier than the other two
methods. This is probably due to the fact that the statistical method
did not identify single drift fragments like the other two methods,
but rather took multiple measurements of the mean drift rate in an
8 min sliding window. The time series of ft07-cy28-11 and ft11-
cy30b-12 in particular were noisier because the standard deviation
parameters had to be adjusted in order to obtain a complete drift rate
time series (see Materials and methods). Overall, the noise might
have been reduced by applying a smoothing filter; however,
considering that the high-resolution time series were solely used for
visual comparison, it was deemed unnecessary.
The five sets of drift rate time series used for the independent

verification displayed remarkable coherence in the apparent trends
in buoyancy change. The detailed high-resolution drift rate time
series revealed how much dive information is inaccessible for
satellite-received time series because of the intermittent
transmission of limited random samples. The positive correlations
between the filtered and visually inspected time series manifest that
– despite detection errors – the step-wise filtering method reliably
detects changes in buoyancy. These positive correlations would be
even stronger if only the beginnings of the corresponding time
series, during which the buoyancy changes are most pronounced,
were compared.
Visual inspection of the detailed high-resolution data with the

corresponding satellite-received abstracted dive profiles revealed that
the step-wise filteringmethod is most prone to type I errors. However,
a large majority of the unidentified drift dives occurred at shallow
depths, were short in duration or included multiple short drift
fragments per dive that could not be adequately represented in the
abstracted dive profile. Thus, the drift rates of these unidentified drift
fragmentswould probably be inaccurate as a result of residual air in the
lungs or false abstraction of the drift fragment and therefore would be
inutile for further analysis, even if they had been correctly identified.
Failure of the abstraction algorithm to convey the geometric

shape using four at-depth inflection points was the most common
source of type II errors. In particular, dive profiles with oscillating
bottom wiggles, also termed D dives (Crocker et al., 1997; Le Boeuf
et al., 1992), were often falsely represented by the abstracted dive
profile. This is because the broken-stick algorithm is limited to two
inflection points to describe the geometric shape of the bottom
phase, which is insufficient to adequately capture the activity in the
bottom phase (Photopoulou et al., 2015). The abstracted profiles of
such dives are thus similar in appearance to drift dive profiles and
can only be discerned in the high-resolution data. Dives of type D
have also been most commonly misclassified as drift dives by the
random forest identification method (Thums et al., 2008a) and we
confirm that seals appear to drift on parts of the depth oscillations at
the bottom of these dives, which is the likely reason for
misclassification also in abstracted dives.
While type II errors of the step-wise filtering method seemingly

can only be reduced by visual inspection of the high-resolution dive

profiles, type I errors could be decreased by refining or adding
selection criteria informed by future studies of drift diving
behaviour. Refinements may be required because the behaviour of
an individual seal influences how its body condition improves. For
example, it is rare for females to reach positive buoyancy during
post-lactation migrations (Thums et al., 2008a), so the step-wise
filtering method excludes positive drift fragments a priori.
However, if positive buoyancy is likely to be expected, the
filtering method should be adapted to accommodate this
information. The random variability caused by individual
behaviour can otherwise be a potential source of error
(Photopolou, 2012), because the effectiveness and relevance of
each selection criterion depends on an individual’s behaviour.

Variation in drift dive profiles as a result of both individual
behaviour and an individual’s location is well illustrated by the daily
variation of drift rates, which is apparent in all drift rate time series
regardless of the method used to obtain them. The proportion of
drift fragments selected by the filtering method was small, which
supports previous findings that drift dives only constitute small parts
of the dive records (Crocker et al., 1997; Dragon et al., 2012; Le
Boeuf et al., 2000). The visual inspection of detailed high-
resolution data further established that compared with other dive
types the proportion of drift dives was consistently small, but the
physical amount of performed drift dives varied up to threefold
among individuals. Whilst in this study, differences in the number
of drift dives between the post-moult and post-lactation periods
varied inconsistently depending on the individual, post-moult and
post-lactation differences as found by Thums et al. (2008b) seem
likely. The lack of a consistent relationship in our study is probably
due to the small number of individuals for which both post-moult
and post-lactation periods could be recorded. Overall, the variation
in the amount of drift dives among and within individuals poses
interesting questions regarding the purpose of drift diving. For
example, if drift dives serve as resting and food-processing dives, as
has been suggested (Crocker et al., 1997; Mitani et al., 2010), does
the variation in the amount of drift dives indicate varying needs for
resting or food processing? Or are there other ways of resting, e.g. by
extending surface intervals? Further, are gaps in the drift rate time
series a result of a reduced need for drifting or due to a failure of the
methods to detect drift dives?

The latter is particularly important because the quadratic
relationship between drag and velocity can lead to discontinuities
in the drift dive record around neutral buoyancy (Biuw et al., 2003).
To overcome such discontinuities, the data are extrapolated for
example by fitting splines. Thus, the reason for such discontinuities
has implications for the interpretation of the resulting fluctuations in
drift rate around neutral buoyancy. Generally, any such fluctuations
should be interpreted cautiously with respect to body condition or
dive behaviour. This is particularly important in phases of
seemingly constant buoyancy, during which fluctuations could
also result from slight changes in the ratio of lean to lipid tissue
together with a change in total body mass.

Individual dive behaviour can affect the detectability of buoyancy
changes. This was especially apparent for the two individuals 26629
and 92567. The drift rate time series of these individuals displayed a
cluster of very slow or even positive vertical speeds during early
parts of the migration when such vertical speeds are highly unlikely.
Such a cluster of slow vertical speeds was also detected in the time
series of ft11-cy30b-12 from the Kerguelen deployment. The dive
fragments from which these vertical speeds stem have similar
characteristics to drift fragments and therefore could not be filtered
out by any of the stated selection criteria. This provides evidence for
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the presence of a second behaviour other than drift diving, which is
depicted similarly by the two-dimensional dive profiles in that the
dive fragments have low variability in depth change over extended
periods of time. The two-dimensional representation of the dive data
may mask a behavioural movement in the third dimension which
could, for example, be associated with more complex dive patterns.
Taking note of the fact that such clusters appear whilst these seals
forage in the area of the Bullard Fracture Zone and Bruce Ridge,
South Atlantic, and the Kerguelen Plateau, southern Indian Ocean,
such complex dive patterns could probably arise in response to the
complex topography that can, for example, induce changes in the
water column by upwelling.
In the Kerguelen deployment, such clusters were only visible in

the time series obtained with the step-wise filtering method and the
statistical method, but not in the visually confirmed time series. This
illustrates that both automated drift dive identification methods were
unable to distinguish between such dive fragments and true drift
fragments, whilst subjective visual inspection of detailed high-
resolution data enabled the two to be differentiated. However, the
broken-stick abstracted dive profiles of these other dive fragments
are indiscernible from true drift dive fragments. Thus, with broken-
stick data alone, these clusters currently can only be eliminated by
manually removing vertical speeds that are inconsistent with the
apparent temporal patterns in the drift rate time series. Presently, a
reliable distinction between these dive fragments and true drift
fragments only seems possible with acceleration data and further
investigations will be needed to ascertain the form and function of
the aforementioned second behaviour.
Generally speaking, if any additional or alternative information

on an individual’s or another species’ diving behaviour is
available, this information can be accommodated by simply
adjusting the selection criteria. For example, Andersen et al.
(2014) used a preliminary version of our method (Gordine, 2013)
and successfully identified drift dives in the dive records of
hooded seals (Cystophora cristata). The selection criteria and the
spline-fitting algorithm presented here are by no means
unchangeable or finite and need to be fine-tuned to a species or
an individual. Other statistical methods such as the random forest
algorithms require additional datasets for training the algorithm,
which can be problematic for small datasets and which also
requires time-consuming visual classification. The advantages of
our method are that it is fast, automated and standardised. Its
implementation is easy for small and large datasets and the results
are reproducible. This enables utilisation of our step-wise filtering
method as a first step in drift dive analysis, after which further
individual refinements can be made.
Given the abstracted nature of any time–depth record, any drift

dive identification method is prone to error, be they visual dive
classification or random forest algorithms trained by visually
classified datasets (Thums et al., 2008a). The important question is
whether a given method is able to convey the relevant information
despite its inherent noise or error. Our method provides long drift
rate time series from abstracted dive profiles that, despite its error
rate, captures the relevant variations in buoyancy change over a
migration. While new methodologies based on on-board
processing are increasingly developed and used, this approach
could substantially increase the amount of information about the
well-being of marine top predators by accessing older, archived
data of abstracted nature. Together with newly collected high-
resolution data, valuable long time series are made available to
address and monitor changes in the physical environment and body
condition.
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Fig. S1. Vertical speed time traces of dive fragments with varying length from one individual 

(seal ID92574). Each time series displays the vertical speeds of dive fragments that were longer than 

either (0) zero minutes; (1) one minute; (2) two minutes; (3) three minutes; (4) four minutes; (5) five 

minutes; (6) six minutes; (7) seven minutes; (8) eight minutes; (9) nine minutes; (10) ten minutes; 

(11) eleven minutes; (12) twelve minutes; (13) thirteen minutes; (14) fourteen minutes; or (15) fifteen 

minutes. Smooth splines, represented by blue lines, were fitted to each time series to detect any 

apparent trend in the underlying data (see Materials & Methods). Splines fitted to time series of 

vertical speeds from longer dive fragments, e.g. longer than eight minutes, showed an improved fit.  
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Fig. S2. Frequency histogram of the length of dive fragments. The dive fragments shaded in grey 

fulfilled all of the seven selection criteria of the step-wise filtering method and were therefore 

considered to be drift fragments. The dive fragments shaded in white were those that were discarded 

by selection criterion (3) because these dive fragments were shorter than the chosen minimum 

fragment length of eight minutes. The histogram demonstrates that most dive fragments under 

consideration were equal or longer than eight minutes. 
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