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Performance trade-offs and individual quality in decathletes
Jeffrey A. Walker* and Sean P. Caddigan

ABSTRACT
Many constraints of organismal design at the cell and organ level,
including muscle fiber types, musculoskeletal gearing and control-
surface geometry, are believed to cause performance trade-offs
at the whole-organism level. Contrary to this expectation, positive
correlations between diverse athletic performances are frequently
found in vertebrates. Recently, it has been proposed that trade-offs
between athletic performances in humans are masked by variation in
individual quality and that underlying trade-offs are revealed by
adjusting the correlations to ‘control’ quality. We argue that quality is
made up of both intrinsic components, due to the causal mapping
between morpho-physiological traits and performance, and extrinsic
components, due to variation in training intensity, diet and pathogens.
Only the extrinsic component should be controlled. We also show that
previousmethods to estimate ‘quality-free’ correlations performpoorly.
We show that Wright’s factor analysis recovers the correct quality-free
correlation matrix and use this method to estimate quality-free
correlations among the 10 events of the decathlon using a dataset of
male college athletes. We found positive correlations between all
decathlon events, which supports an axis that segregates ‘good
athletes’ from ‘bad athletes’. Estimates of quality-free correlations are
mostly very small (<0.1), suggesting large, quality-free independence
between events. Because quality must include both intrinsic and
extrinsic components, the physiological significance of these adjusted
correlations remains obscure. Regardless, the underlying architecture
of the functional systems and the physiological explanation of both the
un-adjusted and adjusted correlations remain to be discovered.

KEY WORDS: Locomotion, Whole-organism performance,
Physiological traits, Form–function mapping

INTRODUCTION
Vertebrate locomotor behaviors are powered by functional
components with well-known trade-offs: musculoskeletal systems
are geared with a specific ratio, and output displacement and force
cannot be simultaneously optimized, muscle fibers develop
phenotypes that increase either fatigue resistance or power at the
cost of the other, and body shapes that augment acceleration have
low mechanical efficiency. Physiologists typically expect these
trade-offs at lower levels of organization (sub-cellular to organ-
system) to scale up to whole-organism performance. Nevertheless,
unexpected positive correlations between performance traits are
frequently observed (Marras et al., 2013; Vanhooydonck et al.,
2014).
Reidy et al. (2000), working with swimming cod, were the first to

comment on these positive correlations and proposed that some cod
are simply ‘good athletes’ and others ‘bad athletes’, which is a

useful way to describe but not explain the pattern. Van Damme et al.
(2002) andWilson et al. (2014b) observed only positive correlations
among human athletic performances and suggested that trade-offs at
the whole-organism level are masked by individual quality, which
Wilson et al. (2014b) explain as: ‘Because individuals vary in
health, physical fitness, nutrition, development or genetics, which is
the underlying basis of individual quality, some individuals perform
better or worse across all types of motor tasks than others. This
means that when researchers try to understand intra-individual
functional trade-offs using inter-individual variation in
performance, then trade-offs that do occur within individuals can
be masked’. We try to clarify this meaning of individual quality with
Fig. 1.

Both Van Damme et al. (2002) and Wilson et al. (2014b) argue
that the intra-individual trade-offs can be recovered by statistically
adjusting for quality. And, both found that the expected negative
correlations emerged only after this adjustment. Importantly, both
Van Damme et al. (2002) and Wilson et al. (2014b) are cited in the
evolutionary and human performance literature as evidence of
performance trade-offs without acknowledging that the measured
correlations were positive (MacArthur and North, 2005; Flueck,
2009; Ruiz et al., 2010; Eynon et al., 2013; Lailvaux and Husak,
2014; Wilson et al., 2014a; Servedio et al., 2014). We emphasize
this because all four methods used to infer trade-offs in Van Damme
et al. (2002) andWilson et al. (2014b) are poor estimators of quality-
free correlations. These methods are: (1) culling all but the top
performers, which is guaranteed to produce a negative correlation,
even if no underlying trade-off exists (Garland, 1994), (2) the
correlation between the residuals of performance traits regressed on
first principal component scores, which is guaranteed to produce
strongly negatively biased correlations (Aitchison, 2003), (3) the
interpretation of principal component (PC) loadings of opposite
signs as indicating an underlying trade-off, which is not a valid
interpretation of loadings, and (4) the partial correlation between
two performances conditional on all other performances, which
removes too much of the shared correlation (Mitteroecker and
Bookstein, 2009). We find similar misuses of multivariate methods
common in the performance literature and strongly encourage
reading our detailed criticism of all four methods (Walker, 2015a).

Despite these methodological issues, individual quality is a
compelling hypothesis to explain a common phenomenon in both
human and non-human performance data. In order to explore the
concept of quality in performance correlations, we compiled a
dataset of decathlon performance data for US collegiate athletes,
and used Sewell Wright’s (1932) path-analytic factor analysis to
estimate ‘quality-free’ correlations among these 10 events. In this
paper, we use a model of functional trade-offs (Ghalambor et al.,
2003) to (1) show how functional trade-offs at the cell, organ or
system level contribute to performance trade-offs at the whole-
animal level, (2) decompose quality into intrinsic and extrinsic
components and show how the extrinsic component can mask the
underlying architecture of the form–function mapping, (3) show
why ‘bottom up’ approaches to predict performance trade-offs at theReceived 13 April 2015; Accepted 17 September 2015
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whole-animal level based on limited knowledge of trade-offs at the
cell or organ level are likely to fail, and (4) show how to estimate a
quality-free correlation matrix. Through analysis of the National
Collegiate Athletic Association (NCAA) decathlon data, we then
show that, compared with the results of Van Damme et al. (2002),
the pattern of measured correlations is similar but our estimates of
quality-free correlations differ in key respects. We also re-analyze
the performance data from sub-elite male soccer players (Wilson
et al., 2014b).

A model of extrinsic and intrinsic components of
performance correlations
The concept of intra-individual variation (Wilson et al., 2014b) is
similar to a counterfactual conditional statement such as, ‘were the
mechanical advantage 0.3 and not its real value 0.2, the force
output would be 0.6 N and not its real value 0.4 N’. But there is
nothing special about applying this concept to morpho-
physiological traits as opposed to individual quality factors
(‘were my training 750 h per year and not its real value 500 h,
my marathon time would be 2 h:18 min and not its real value
2 h:28 min’). We suggest that the masking problem is not one of
inter- versus intra-individual variation but of intrinsic versus
extrinsic variation, where extrinsic variation results from
differences in exposure to extrinsic factors such as training
intensity or style, diet, recovery, stressful life events, pathogens,
etc. All intrinsic factors should be left unadjusted.
We developed a model of how functional trade-offs, which arise

at the sub-whole-animal level, combine with extrinsic quality
factors to contribute to performance correlations that wemeasured at

the whole-animal level. This model uses the graphical algebra of
path models, which were specifically developed by Sewell Wright
(1918, 1932, 1934) to model the underlying factors (‘causes’)
generating correlations among measured traits. While elegant, path
models are not necessary for any conclusion that we illustrate. The
basic algebra of path models is available in some biostatistics
textbooks (e.g. Sokal and Rohlf, 2012). Shipley (2002) is a more
thorough introduction to path models in functional biology and
ecology. Pearl (2009) formalizes many of the concepts of causal
graphs. Our path models are models of simplified functional
systems and used only to develop a general theory; we do not
attempt to test detailed causal models of performance variation in
humans. Our models ignore some complexities of real systems in
order to focus on the fundamental principles. But ignoring the
complexities of real systems does not make our simplified models
irrelevant; on the contrary, the complexities make the goals of
discovering underlying trade-offs that much more difficult. The
scripts for generating simulated data using all of the path models
introduced below are available elsewhere (Walker, 2015b).

Functional trade-offs are sometimes measured as a correlation
between performance traits at the individual or evolutionary (among
species) level, but these correlations are also influenced by non-
functional factors (see below). We define a functional trade-off as a
pattern of form–function mapping in which a morpho-physiological
(M-P) trait causally affects two performance traits in opposite
directions (Ghalambor et al., 2003). Our definition can be more
precisely defined using the graphical algebra of the path diagram in
which a single M-P trait M (say, percentage type I fibers in the
biceps femoris muscle) has opposite causal effects (β) on the
performance traits P1 and P2 (say 100 m and 1500 m speeds):

M

P1 P2U1 U2

β1 β2

(1)

where β1 and β2 have opposite signs. The U represent ‘noise’ or
additional variance that is uncorrelated with all other effects. In all
later path models, the U are implied but not written out.

We refer to this kind of path diagram as a form–function map. The
pattern of causal arrows from M-P traits to performance traits is one
component of the functional architecture of an organism. The single-
headed arrow indicates a causal effect and the path coefficient
represents the sign andmagnitude of the effect. Here and elsewhere in
this paper, all variables in a path model are standardized to unit
variance, which makes the path coefficients standardized. The
consequence of this standardization gives the path diagram its most
elegant feature: the expected correlation between any two traits can
be quickly computed as the sum of the products of the coefficients
along all paths connecting the two variables. The expected
performance correlation between P1 and P2 is β1β2. The
performances are correlated because they share the common cause
(M ). The U do not contribute to the correlation because neither is a
common cause of P1 and P2. We call the expected correlation due to
themapping ofM-P traits to performance the ‘functional correlation’.
In this simple model, but not in more complex models (see below),
the functional correlation is the expected performance correlation. A
negative functional correlation is a functional trade-off and occurs if
β1 and β2 have opposite signs. A positive functional correlation is a
functional facilitation (Ghalambor et al., 2003).
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Fig. 1. How individual quality masks functional trade-offs. The double-
headed arrow connecting a true and counterfactual individual represents the
‘intra-individual functional trade-off’ (Wilson et al., 2014b). The double headed
arrow between true individual A and true individual B represents the ‘inter-
individual variation’ in quality (Q effect) that masks the intra-individual trade-off.
For simplicity, the trade-off is determined by a single underlying morpho-
physiological (M-P) trait that has opposite effects on the two performances (M
effect). A counterfactual individual is one that is like the real individual in every
way except for a change in the underlying M-P trait and the consequent
changes in both performances. Individuals A and B do not differ in their M-P
trait but individual B is better at both performances because of a difference in
exposure to some extrinsic quality variable. This quality might result from
something like differences in training or health status (for example, individual A
might have a respiratory infection that both narrows respiratory tubes and
decreases muscle contractility or motor unit recruitment).
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We introduce a second causal variable Q, which represents
sources of variation extrinsic to the organism (e.g. variation in
training hours). Furthermore, let Q have positive effects (α) on both
performances (e.g. the more one trains, the better one gets at both the
100 m and 1500 m events) that are independent of the effects ofM:

M

P1 P2

Q

β1
β2 α1

α2
(2)

While it appears that Q affects performance by some mechanism
other than through M-P traits, our model is a mathematical
simplification of, but precisely equivalent to, a full model with Q
acting through the M-P traits (Walker, 2015b).
The functional correlation in Eqn 2 is β1β2 but the expected

performance correlation is α1α2+β1β2. The component α1α2 is
positive; adding Q to the model shifts the expected performance
correlation in a positive direction. Regardless of the magnitude of
the α, the effect of the functional trade-off is masked. If the α are
small relative to the β, only the magnitude will be masked (i.e. a
smaller, negative performance correlation than would occur if there
were no variation in training). But if the α are large relative to the β,
the sign will be masked too.
If theα are anythingbut trivially small, the performance correlation

fails to represent the expected correlation due to functional
architecture. To estimate the functional correlation, one needs a
dataset in which Q is constant or has very small variance. Ideally,
these data would come from an experimental design in which the
individuals were raised in a common environment. IfQ contaminates
a dataset, and the goal is to estimate a Q-free correlation, the path
model in Eqn 2 suggests a simple and elegant solution:

rquality-free ¼ rraw � a1a2; ð3Þ
where rraw is the measured correlation. Below, we show that
rquality-free is equivalent to the functional correlation only in the
special case of no correlation among the M-P traits.
Now, we replace Q with a second M-P trait that causally affects

both performances in the same direction; shorter heels, for example,
increase both sprinting and endurance performance in humans
(Scholz et al., 2008; Lee and Piazza, 2009).

M1

P1 P2

M2

β11
β12 β21

β22
(4)

Note that we have changed the coefficient symbols to reflect the fact
that our second causal variable represents an underlying M-P trait
and not an extrinsic factor. The expected performance correlation
(β11β12+β21β22) is the sum of two functional correlations, each due
to its own common cause. We call the sum of the functional
correlations the ‘net’ functional correlation. A net functional trade-
off is a negative net functional correlation. It is a pattern of form–
function mapping where a set of M-P traits causally affects two
performance traits in opposite directions.

In Eqn 2, we have a functional system in which the underlying
form–function mapping is being masked byQ. We quite reasonably
consider Q a nuisance factor and want to adjust the raw correlation
to get rid of its effect. By contrast, in Eqn 4, we have a functional
system with two underlying M-P traits. Trait M1 causes a trade-off
(its path coefficients are of opposite sign). Trait M2 causes a
facilitation. Holzman et al. (2011), among others, emphasized that
the M2 facilitation mitigates the M1 trade-off but it makes equal
sense to say the M1 trade-off attenuates the M2 facilitation. If
the facilitation is larger, the net functional correlation is positive.
A positive performance correlation faithfully represents the
underlying functional architecture; that is, the pattern of how M-P
traits map to performance. We most definitely do not want to adjust
the correlation to control for M2. Instead, we have high- and low-
quality athletes because of the functional architecture. Quality is
determined by the intrinsic properties of the causal mapping from
M-P traits to performance.

The contrast between the path diagrams in Eqns 2 and 4 raises the
concern, what kinds of traits do we call Q (extrinsic quality) and
consider a nuisance variable that should be statistically adjusted and
what do we consider M (intrinsic quality) and part of the functional
architecture? For example, recent work on the genetic predictors of
the individual response to training in humans suggests the presence
of networks of muscle-plasticity genes that affect the ability ofmuscle
to remodel. These networks are activated in the same way in both
resistance and endurance training (Timmons, 2011; Phillips et al.,
2013). If these plasticity networks have large magnitude effects on
performance, wewould expect some individuals to excel in both high-
power and high-endurance events and some to perform poorly in both
types of events, even if all athletes had precisely the same training.
This variation in the response to training is an intrinsic component of
phenotypic design, as opposed to the extrinsic variation in different
training plans. Do we measure this response to training, score it as
Q and adjust for its effects on the correlations, or do we score it as
another M-P trait M and allow it to contribute to the net functional
correlations? Other traits, especially physical traits (pain and stress
signaling systems related to tolerance, including CNS feedback
limitingmuscle strain and, consequently, performance) that contribute
to psychological factors like ‘mental toughness’ or ‘competitiveness’
may be even more ambiguous as to how these should be considered.
We believe all these intrinsic traits should be scored as M.

This concern is augmented if Q is a latent variable, as in Wilson
et al. (2014b) and Van Damme et al. (2002). Latent variables are
mathematical constructs (such as the first principal component) but
are generally interpreted to be something meaningful, for example
‘general intelligence’, ‘general size’ or ‘individual quality’. With a
latent Q, how do we differentiate the system in Eqn 2 from that in
Eqn 4, both of which result in a first PC with all positive loadings?
Even worse, the first PC can be a mixture of intrinsic and extrinsic
contributions to quality. In Walker (2015b), we generated simulated
data representing 10 performance traits affected by two M-P traits
and a single, extrinsic quality trait. The M-P traits had a modular
mapping to performance with one having moderate effects on
performance traits 1–5 and the other having moderate effects on
performance traits 6–10. The quality trait had a small effect on six of
the 10 performance traits and zero effect on the other four
performance traits. The loadings on PC1 were all the same sign,
suggestive of a single, global factor even though none existed.
While a PC1 with all positive loadings is an axis representing
athletic quality, a pattern of all-positive loadings cannot justify
interpreting the axis as representing extrinsic sources of variation
that need to be adjusted away.
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Why performance correlations may be poorly predicted
Predicting a correlation between a pair of performance traits based
on a qualitative relationship between one or a few underlying M-P
traits and the performance traits is nearly ubiquitous in the
performance literature (e.g. increased upper limb muscle mass
should increase shot put but cost high jump performance). But a net
functional correlation is the sum of all the expected component
correlations (Ghalambor et al., 2003). For example, in the path
diagram in Eqn 4, the net functional correlation is β11β12+β21β22.
This raises a major concern with bottom-up approaches to
predicting correlations between performance variables. Many of
the performance traits that we care about, especially at the whole-
animal level, have many tens, hundreds or even thousands of
underlying common causal factors, many of which we are ignorant
of, and for most of which we have little information on the
magnitude of the effect on each performance, and thus the expected
component correlation. Given our knowledge of only a fraction of
the common causes, and quantitative estimate of effect size for
only a fraction of these, it would seem our ability to predict a
performance correlation is extremely limited. Vanhooydonck et al.
(2014) make a similar argument but without the benefit of a
graphical or mathematical model.
In addition to our general ignorance of the form–function map,

performance correlations are confounded by correlations among
M-P traits. In Eqn 4, the pattern of trade-offs and facilitations in the
form–function map is the only factor contributing to correlations
among performance traits and, as a consequence, the expected
correlation between the performance traits (the performance
correlation) is the net functional correlation. This expectation is a
reason that functional trade-offs are frequently measured as a
correlation between performance traits at the individual or
evolutionary (among species) level. A performance trade-off,
however, is determined by both the pattern of form–function
mapping and the correlations between M-P traits:

M1

P1 P2

M2

β11
β12 β21

β22

r12

(5)

where r12 is the correlation between the M-P traits. The expected
performance correlation is β11β12+β21β22+r12β11β22+r12β12β21. This
correlation is not only due to both the sign and magnitude of the net
functional correlation but also to the sign and magnitude of the
phenotypic correlation between the M-P traits. A phenotypic
correlation can cause a performance correlation to be larger, smaller
or even of opposite sign relative to the net functional correlation
(Holzman et al., 2011; Walker, 2015b). Indeed, if M1 maps only to
P1, M2 maps only to P2 and r12 is negative, the expected
performance correlation is negative despite the lack of any
underlying M-P trait that has opposite effects on performance.

A brief introduction to estimating a quality-free correlation
matrix
When we ask, ‘is there a functional trade-off between two
performances’, we want to know whether the net functional

correlation is negative. A net functional correlation is the expected
correlation between two performance variables due only to the
pattern of causal mapping from M-P traits to performance. It will
generally not be equivalent to the expected performance correlation,
which includes additional components due to correlations among
the M-P traits and to extrinsic effects. Above, we introduced both
bottom-up and top-down methods for estimating a net functional
correlation. The bottom-up approach can be generalized to a m×m
matrix of net functional correlations among m performance
variables using (Ghalambor et al., 2003):

Rfunc ¼ F`F; ð6Þ

where F is the p×m matrix containing the path coefficients of the
causal effects of p M-P traits on m performances. The matrix
contains the expected trade-offs and facilitations among the
performance variables at the whole-animal level given only the
functional mapping. The problem with this bottom-up approach, as
discussed above, is that we would need to know all causal effects to
compute the net functional correlations with any accuracy.

The top-down approach is the matrix formulation of Eqn 3:

Rquality-free ¼ Rraw � âQâ
`
Q ; ð7Þ

where âQ is the vector of path coefficients from some measure of Q
to each performance variable. If âQ is estimated as the loadings on
PC1, then Eqn 7 is equivalent to the covariance matrix of the
residuals of the regression of each performance trait on PC1. The
matrix âQâ

`
Q contains the component correlations due toQ only. As

an estimate of the net functional correlation, Eqn 6 assumes (1) Q
contains only extrinsic variables, (2) Q contains all extrinsic
variables, (3) âQ is an unbiased estimate of the effects of Q on
performance, and (4) there is no phenotypic correlation among the
morphological traits. We introduced assumptions 1, 2 and 4 above.
Assumption 3 is violated using standard measures of a latent Q and
we offer a solution here. Because assumption 4 is violated, we use
the term ‘quality-free’ and not ‘net functional correlation’ to refer to
the matrix Rquality-free.

A bias-correction for Eqn 7 was provided by Wright (1932) in
order to estimate ‘size-free’ correlations among a set of
morphometric traits in which the underlying pattern of
correlations is masked by ‘general size’ variation among
individuals. Wright used the loadings of the traits on PC1 (âPC1)
(although he did not use the term ‘principal component’) as
estimates of αQ (Mitteroecker and Bookstein, 2009). Given the
matrix of expected correlations due only to the individual quality (or
general size) effects estimated by PC1 (RPC1 ¼ âPC1â

`
PC1) the bias-

corrected quality (or size)-free correlations are:

Rbc ¼ Rraw � RPC1
�rraw
�rPC1

; ð8Þ

where �rraw and �rPC1 are the mean off-diagonal elements in Rraw and
RPC1, respectively. We note that Wright (1932) used only the subset
of ‘among-module’ correlations in the computation of �rraw and �rPC1,
where ‘among-module’ refers to a pair of morphometric traits
occurring in different development modules defined a priori. Here,
we relax the necessity of an a priori factor structure and use the
means of all off-diagonal elements in Rraw and RPC1. We refer to the
uncorrected (Eqn 7) and bias-corrected (Eqn 8) residuals as
Wright’s uncorrected (WUC) and Wright’s bias-corrected (WBC)
correlations.
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MATERIALS AND METHODS
Decathlon data from male, college athletes (NCAA), generally aged 18–
24 years, were collected from Track and Field Results and Reporting System
(http://www.tfrrs.org/). Following the 2014 outdoor season, we collected
personal-best values from each of the decathlon events for each athlete
across all seasons recorded for that athlete. We allowed recorded personal
bests for different events to occur in different seasons for the same athlete.
While there are cogent arguments for analyzing sample mean and not
maximum performance (Head et al., 2011), we used the maxima because
these were accessible without mining data from individual meets. Data were
collected for divisions I, II and III and combined into a single dataset of
personal bests. To standardize performance direction such that larger values
indicate better performance, times for the 100, 400 and 1500 m and the
110 m hurdles were converted to speed in m s−1. All athletes with any
missing event were removed from the dataset, leaving N=611 athletes with
complete data.

We computed the partial correlations conditional on all other
performance variables (Van Damme et al., 2002), regression residual
correlations (Wilson et al., 2014b), and WUC and WBC residual
correlations of the decathlon data. Standard statistical packages do not
give the correct error of these correlations as estimates of quality-free
correlations. For example, one can get the error statistics (standard errors,
P-values, confidence intervals) for the regression residual correlations from
any statistics package and these error statistics are correct for these
correlations as estimates of the correlation of regression residuals but as a
regression residual correlation is a biased estimate of the true quality-free (or
PC1-free) correlation they do not give the correct error for the quality-free
correlation.

To estimate the error of the quality-free correlations, we implemented a
Monte Carlo simulation. Specifically, we modeled the process generating
the NCAA data by simulating the causal mapping from m=19 functional
‘factors’ to p=10 decathlon performance traits for N=611 individuals using:

P ¼ qa` þMBþ U; ð9Þ
where P is the n×p matrix of centered and variance-standardized simulated
performance traits, q is the n×1 matrix of random, normal variables that
represents athletic quality for the n individuals, α is the p×1 matrix of
variance-standardized causal effects (path coefficients) of quality on each
performance trait, M is the n×m matrix of centered and variance-
standardized random, normal variables that represent the M-P traits, B is
the m×p matrix of variance-standardized causal effects of the m M-P traits
on each performance trait, and U is an n×p ‘unexplained error’ matrix of
random, normal error with column standard deviations scaled so that the
columns of P have unit variance.

We parameterized Eqn 9 by substituting âbc for α, where:

âbc ¼ âPC1

ffiffiffiffiffiffiffiffiffi
�rraw
�rPC1

r
: ð10Þ

Again, âPC1 is the vector of loadings on PC1, �rraw is the mean off-diagonal
correlation in the Pearson correlation matrix, and �rPC1 is the mean off-
diagonal correlation in the matrix of expected correlations due to PC1 (see
Eqn 8). The β coefficients inB are random, exponential with rate (λ) equal to
1 and rescaled so that each element of the diagonal of aa` þ B`B is equal
to R2=0.95, the percentage of the total variance explained by the simulated
quality factor andM-P traits that causally effect performance. The number of
M-P traits (m) was set to 19 because this number generated a distribution
(mean and s.d.) of the correlations in the size-free correlation matrix similar
to that estimated by WBC correlations of the decathlon data (Fig. S1).

The true matrix of quality-free correlations of the modeled data P is:

Rqf ¼ B`B: ð11Þ
We generated 2500 simulated datasets and computed for each the partial
correlations, regression residual correlations, and WUC and WBC
correlations. We then computed the error from the true correlations,
R̂ � Rqf for each simulated dataset, where R̂ is the estimated matrix using
any of the four methods.

The complete set of scripts to process the data were written in R v3.1.2 (R
Core Team, 2014) and are available as on GitHub at https://github.com/
middleprofessor/NCAA_decathlon.

RESULTS
We computed raw and quality-adjusted correlations among the 10
decathlon events for 611 college athletes. To facilitate
interpretation, the events are organized into blocks containing
functionally similar events (throws, jumps, runs). All 45 of the
Pearson product-moment correlations among the 10 events are
positive and are generally of moderate to large magnitude (Fig. 2,
Table 1) with a range of 0.2 to 0.84. The Pearson correlation heat
map (Fig. 2) shows slightly higher correlations within than among
the functional blocks (cells closer to the diagonal tend to be
darker). The smallest correlations are between 1500 m speed and
all other events except 400 m speed. The pole vault also has
noticeably smaller correlations with other events, including other
jumps.

Quality-adjusted correlations are shown in Fig. 3. In general, the
partial correlations are small and positive with only one moderately
negative estimate, that between 1500 m and 100 m speeds. This
result is consistent with the results of Van Damme et al. (2002)
although their table 1 reports only the sign if statistically significant
or ‘NS’ if not. By contrast, the regression-residual correlations are
almost all negative among functional blocks. Within functional
blocks, the regression-residual correlations are positive within the
throws block, mostly positive within the runs block, and mostly
negative within the jumps block. The overall trend in correlations is
nearly opposite between partial and regression residual correlations.
The two sets of correlations, however, are orthogonal. That is, the
large, positive estimates using partial correlation tend to be near zero
using regression residual correlation, while the estimates near zero

1500400100110PVLJHJJSPD

–1.0 0–0.5 0.5 1.0
Correlation

D

SP

J

HJ

LJ

PV

110

100

400

1500

Fig. 2. Heat map depicting the sign and magnitude of the Pearson
product-moment correlations among the 10 decathlon events for the 611
NCAA athletes. The map shows that all correlations in this matrix are positive
and of moderate to large value. Events: 1500 m speed, 400 m speed, 100 m
speed, 110 m hurdles speed, pole vault (PV), long jump (LJ), high jump (HJ),
javelin (J), shot put (SP) and discus (D).
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using partial correlation tend to be large and negative using
regression residual correlation.
The WUC correlations show a pattern similar to the regression-

residual correlations except that all values are closer to zero. This
must be the case as the uncorrected residual correlations are
equivalent to the covariance of the regression residuals and the
variances of the residuals are all less than one.
The WBC correlations are slightly shifted in a positive direction

relative to theWUC correlations. Again, this is expected because the
algorithm corrects the negative bias in the uncorrected estimates. The
consequence is that the negative correlations are slightly less negative
while the positive correlations are slightly more positive. The
correlations within the throws and the runs functional blocks are
small to moderate and positive, while the correlations within the
jumps functional block are very small and positive. One exception in
this pattern is the small, negative correlation (r=−0.07) between
1500 m and 100 m speeds. There are small trade-offs among the

throws and runs functional blocks. The largest trade-offs (r from
−0.12 to−0.14) are between 400 m speed and the throws. Otherwise,
among-block correlations are very small (in both positive and
negative directions). The biased (PC1 loadings) and bias-corrected α
to compute WUC and WBC correlations are given in Table 2.

We usedMonte Carlo simulation to estimate the error distribution
under the assumption that the data are log-normally distributed and
with a pattern of correlations similar to that of the NCAA data
(Fig. 4A). There is a positive bias and large variance in the error for
the partial correlations (mean±s.d., 0.10±0.22) and a negative
bias and moderate variance for the regression residual error
(−0.11±0.14). There is a small negative bias and small variance
in the WUC errors (−0.05±0.05). There is effectively no bias and
small variance in the WBC errors (<0.01±0.05). In Fig. 4B, we
show the true correlations as a function of the WBC estimate.
The 2.5%, 50% and 97.5% quantile regression lines are also shown.
We used the lower and upper quantile regression functions to

Table 1. Correlations for all pairwise combinations of events using the method of Pearson (Pearson), partial correlations conditional on all other
events (PCOR), regression residual correlation (RR), Wright’s uncorrected correlations (WUC) and Wright’s bias-corrected correlations (WBC)

Event 1 Event 2 Pearson PCOR RR WUC WBC Lower WBC Upper WBC

Shot put Discus 0.84 0.66 0.58 0.21 0.26 0.15 0.37
Javelin Discus 0.69 0.24 0.28 0.12 0.16 0.06 0.27
Javelin Shot put 0.67 0.18 0.22 0.09 0.14 0.03 0.24
High jump Discus 0.57 0.07 −0.13 −0.05 0 −0.09 0.1
High jump Shot put 0.6 0.08 −0.09 −0.03 0.02 −0.08 0.12
High jump Javelin 0.53 0.08 −0.12 −0.05 0 −0.09 0.1
Long jump Discus 0.57 −0.03 −0.34 −0.11 −0.05 −0.14 0.05
Long jump Shot put 0.61 0.09 −0.24 −0.07 −0.02 −0.11 0.08
Long jump Javelin 0.54 0.07 −0.22 −0.08 −0.03 −0.12 0.07
Long jump High jump 0.72 0.39 0.14 0.05 0.1 0 0.21
Pole vault Discus 0.53 0.2 −0.05 −0.02 0.03 −0.07 0.13
Pole vault Shot put 0.46 −0.11 −0.22 −0.09 −0.05 −0.14 0.05
Pole vault Javelin 0.49 0.15 −0.03 −0.01 0.03 −0.07 0.13
Pole vault High jump 0.46 −0.02 −0.19 −0.08 −0.04 −0.13 0.06
Pole vault Long jump 0.55 0.15 −0.13 −0.05 0 −0.09 0.1
Speed 110 h Discus 0.52 0.02 −0.34 −0.12 −0.07 −0.16 0.03
Speed 110 h Shot put 0.55 0.06 −0.29 −0.1 −0.05 −0.14 0.05
Speed 110 h Javelin 0.45 −0.04 −0.34 −0.14 −0.09 −0.17 0.01
Speed 110 h High jump 0.64 0.21 0 0 0.05 −0.05 0.15
Speed 110 h Long jump 0.7 0.16 0.01 0 0.06 −0.04 0.16
Speed 110 h Pole vault 0.53 0.16 −0.08 −0.03 0.01 −0.08 0.11
Speed 100 m Discus 0.46 0 −0.43 −0.16 −0.11 −0.19 −0.02
Speed 100 m Shot put 0.51 0.03 −0.32 −0.12 −0.07 −0.15 0.03
Speed 100 m Javelin 0.44 0.07 −0.3 −0.13 −0.08 −0.17 0.02
Speed 100 m High jump 0.54 −0.09 −0.22 −0.08 −0.03 −0.12 0.07
Speed 100 m Long jump 0.73 0.37 0.19 0.06 0.12 0.01 0.22
Speed 100 m Pole vault 0.45 −0.02 −0.21 −0.09 −0.05 −0.14 0.05
Speed 100 m Speed 110 h 0.66 0.1 0.06 0.02 0.08 −0.02 0.18
Speed 400 m Discus 0.41 −0.06 −0.48 −0.19 −0.14 −0.22 −0.04
Speed 400 m Shot put 0.44 0.05 −0.43 −0.17 −0.12 −0.2 −0.02
Speed 400 m Javelin 0.37 −0.07 −0.41 −0.18 −0.14 −0.22 −0.04
Speed 400 m High jump 0.51 0.04 −0.24 −0.09 −0.04 −0.13 0.05
Speed 400 m Long jump 0.61 −0.01 −0.12 −0.04 0.01 −0.08 0.11
Speed 400 m Pole vault 0.46 0.04 −0.15 −0.07 −0.03 −0.12 0.07
Speed 400 m Speed 110 h 0.65 0.23 0.09 0.03 0.09 −0.01 0.19
Speed 400 m Speed 100 m 0.75 0.58 0.38 0.15 0.2 0.09 0.31
Speed 1500 m Discus 0.25 0.11 −0.15 −0.08 −0.06 −0.14 0.04
Speed 1500 m Shot put 0.2 −0.09 −0.26 −0.14 −0.11 −0.2 −0.02
Speed 1500 m Javelin 0.21 0.05 −0.15 −0.09 −0.07 −0.15 0.03
Speed 1500 m High jump 0.25 0.01 −0.16 −0.09 −0.06 −0.15 0.04
Speed 1500 m Long jump 0.24 −0.01 −0.25 −0.12 −0.09 −0.17 0.01
Speed 1500 m Pole vault 0.29 0.07 0 0 0.02 −0.07 0.12
Speed 1500 m Speed 110 h 0.29 −0.07 −0.1 −0.06 −0.03 −0.12 0.07
Speed 1500 m Speed 100 m 0.23 −0.33 −0.18 −0.1 −0.07 −0.16 0.02
Speed 1500 m Speed 400 m 0.58 0.61 0.44 0.26 0.28 0.16 0.39

In addition, the lower and upper bounds of the 95% error intervals of the WBC estimates are given.
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compute the 95% error intervals of the WBC estimate in Table 1.
These error intervals are not the long-run probability intervals of
the correlation coefficient but the 95% bounds of true correlation
coefficients that ‘generate’ the observed coefficient (Fig. 4B).

The consequences of the effect sizes of the WBC quality-free
correlations can be explored by computing what-if scenarios. For
example, if we could intervene and shift M-P trait values in the
direction that would cause 1500 m speeds to increase by two
standard deviations, equivalent to running 42.7 s faster (i.e. from
middle of the pack among all NCAA decathletes to top 2.5%),
100 m times would slow by only 0.064 s. In the 2014 division I
championship, this intervention would drop the 100 m placing by an
average of 1.5 places. This effect is not trivial but is quite small
given the huge intervention in 1500 m time.

In addition to analyzing the NCAA decathlon data, we re-
analyzed the soccer data of Wilson et al. (2014b). As shown in the
original study, all five performances are positively correlated
(Fig. 5A; Table S1). As with the NCAA data, the partial correlations
and regression residual correlations are largely orthogonal, and
result in radically different interpretations (Fig. 5B,C). The WBC
estimates are small and of both signs (Fig. 5D). Notably, the WBC
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Fig. 3. Heat maps depicting the sign and magnitude of the quality-adjusted correlations among the 10 decathlon events for the 611 NCAA athletes.
Positive correlations are blue, negative correlations are red, color intensity reflects the magnitude of the correlation (see legend in Fig. 2). (A) Partial correlations
conditional on all additional performance variables. (B) Regression residual correlations computed using the residuals of each performance trait regressed on the
first principal component (PC1) scores. (C) Wright’s uncorrected correlations. The values are equivalent to the covariances of the regression residuals used
in B. (D) Wright’s bias-corrected correlations. Note that the running performances are in units of speed and not duration. Event abbreviations as in Fig. 2.

Table 2. Estimate of the quality (Q) path-coefficient α

Event â âbc

Speed 100 m 0.78 0.75
Speed 400 m 0.76 0.73
Speed 1500m 0.42 0.4
Speed 110 h 0.81 0.78
High jump 0.79 0.76
Long jump 0.86 0.82
Pole vault 0.69 0.66
Shot put 0.8 0.77
Discus 0.79 0.76
Javelin 0.73 0.7
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estimate (0.11) (Table S1) of the WBC correlation between 1500 m
and 40 m sprint is in the direction opposite to the expectation of a
trade-off between high-endurance and high-power performances.
That said, the error associated with theWBC estimates is too large to
have much confidence in their sign (Fig. S2).

DISCUSSION
We found only positive correlations among the 10 events of the
decathlon. As a consequence, the PC1 of these data describes an
axis of athletic quality; athletes with high PC1 scores perform
better at all events. These results are consistent with prior work on
both humans (Van Damme et al., 2002; Wilson et al., 2014b) and
non-human vertebrates (Reidy et al., 2000; Marras et al., 2013;
Vanhooydonck et al., 2014). We used a slight modification of

Wright-style factor analysis with bias-correction (Wright, 1932)
to estimate quality-free correlations. Elsewhere (Walker, 2015a),
we have shown mathematically and with simulation that all four
methods used by Van Damme et al. (2002) and Wilson et al.
(2014b) result in poor inferences of underlying functional trade-
offs. This can also be shown empirically, as a simple comparison
of the partial and regression correlations shows starkly different
patterns (Figs 3, 5). The partial correlation and regression residual
correlation were the major methods used by Van Damme et al.
(2002) and Wilson et al. (2014b), respectively. Clearly, both
cannot be correct. Indeed, both are incorrect; the partial
correlations are shifted in a positive direction while the
regression residual correlations are shifted in a negative direction
(Fig. 4).
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B Fig. 5. Heat maps depicting the sign and
magnitude of the quality-adjusted correlations
among the five performances measured for 28
soccer players. Positive correlations are blue,
negative correlations are red, color intensity reflects
the magnitude of the correlation (see legend in
Fig. 2). (A) Pearson product-moment correlations.
(B) Partial correlations conditional on all additional
performance variables. (C) Regression residual
correlations computed using the residuals of each
performance trait regressed on the PC1 scores.
(D) Wright’s bias-corrected correlations.
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Fig. 4. The distribution of the errors estimated byMonte
Carlo simulation of the NCAA decathlon data. (A) Box
plots with the median, and 50% and 95% intervals
represented by the horizontal line, the box and the tips of
the whiskers. PCOR partial correlations conditional on all
other events; RR, regression residual correlation; WUC,
Wright’s uncorrected correlations; and WBC, Wright’s bias-
corrected correlations. (B) True quality-free correlation as a
function of the Wright’s bias-corrected estimated
correlation. The blue lines are the 2.5%, 50% and 97.5%
quantile regressions used to compute the 95% confidence
intervals in Table 1.
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An important but unresolved question is: what is the effect of
measurement error on our estimates of the quality-adjusted
correlations? Correlations between variables measured with error
are biased toward zero and the magnitude of this bias is a function of
the repeatability and number of replicates per individual (Adolph
and Hardin, 2007; Adolph and Pickering, 2008). Repeatability in
our data varies between 0.81 and 0.86 for all events except 1500 m
speed (0.77), which is relatively high but also computed from the
best performances for each outdoor track season. Because our data
are sample maxima (and not sample means), standard corrections
for correlation attenuation would also likely contain some unknown
error (Head et al., 2011). Even if we had estimated sample mean
performances for each individual, a standard correction may not be
applicable to the quality-free correlations that we attempt to interpret
as these are missing the component correlation due to a global
(quality) factor and we do not know how the bias is decomposed and
distributed across multiple components. If the bias affects only the
global (quality) component, then our quality-free correlations are
not attenuated by measurement-error bias.

The predictability of performance correlations
‘Physiological and biomechanical theory predicts that there
should be trade-offs between certain pairs [of decathlon event
performances] – for example, speed depends on the athlete having a
high proportion of fast, fatigue-sensitive muscle fibres, whereas
endurance relies on a higher proportion of slower fibres that are
more resistant to fatigue’ (Van Damme et al., 2002). In the
Introduction, we showed why we will often fail to predict
performance correlations given our limited knowledge of the
form–function map. But the general strategy of using a P-value
between performance correlations as a test of qualitative models of
form–function mapping suffers from two additional flaws. First,
any test of the hypothesis that a correlation is equal to zero can be
rejected without statistics. All performance traits are jointly affected
by multiple underlying causal factors and must co-vary. A P-value
tells us nothing more than the adequacy of our sample size to reject
the null. When the null is rejected, the magnitude of the correlation
coefficient is rarely compared to some prediction based on a
quantitative model; in fact the magnitude is typically ignored and
frequently not even reported. Instead, the sign is compared to an
expectation based on well-known trade-offs at the cell or organ
level, such as muscle fiber type or gearing ratio. But predicting the
sign of a correlation is hardly a severe test; the flip of a fair coin will
predict the sign of a correlation between any two performances 50%
of the time.
Second, a rigorous model of the causal basis of performance

correlations requires accurate and precise estimates of causal effects.
Almost all causal effects of M-P traits on performance are estimated
using regression coefficients from observational data. Many biases,
such as omitted confounders, necessarily infect observational
designs (Shalizi, 2013) but the most commonly used biostatistics
textbooks in comparative physiology fail to describe these biases.
Consequently, few physiologists recognize how sensitive regression
coefficients are to missing confounders or that standard errors from
statistical packages are not the proper standard error if interpreting
regression coefficients causally. The sensitivity of regression
estimates to missing confounders using realistic causal models
was not systematically explored until recently (Walker, 2014).
Because standard errors from statistical packages model only
sampling error, and error variance due to missing confounders does
not decrease with sample size, increasing sample size simply gives
the investigator increasingly false P-values (Walker, 2014). Any

rigorous estimate of causal effects will require some combination of
computational modeling, direct phenotypic manipulation, and
indirect manipulation via regulation of gene expression (Wang
et al., 2004). It is hard to over-emphasize these two points because
they are contrary to statistical training in much of biology.

What facilitations or quality do not mask
If individual quality masks functional trade-offs, these trade-offs
can still emerge at the level of among-individual performance. For
example, if training specifically targets M1, which has opposite
effects on performances P1 and P2, one performance will increase at
the cost of the other, even if there is a positive correlation among P1

and P2 arising from a large quality effect. To show this, we
parameterize Eqn 2 with a small functional trade-off and a large
functional facilitation (Walker, 2015b).

M1

P1 P2

Q

-0.4
0.4 0.7

0.7
(12)

The expected performance correlation is 0.33. If we intervene and
increase the mean value ofM1 by 0.5, then we expect P2 to increase
by 0.2 units butP1 to decrease by 0.2 units. The expected response is
ΔMiβij, where ΔMi is the effect of the intervention onMi and βij is the
causal effect of Mi on Pj, which shows that the magnitude of the
trade-off in the response is independent of the mapping of Q to
performance. This result is general; that is, the masking traitQ could
be a M-P traitM2 (Eqn 2), and only assumes that the intervention is
specific to M1. The intervention could be experimental (including
artificial selection) or arise from different reaction norms (strong in
M1, weak in M2) to an environmental stimulus (including specific
training in humans). Variation in the stimulus generating ΔMi is an
extrinsic factor while variation in ΔMi due to the same stimulus is an
intrinsic factor.

Intrinsic and extrinsic quality
Above, we presented the intrinsic and extrinsic quality models of
variation in athletic quality, both of which will generate positive
correlations among performances and a PC1 with all positive
loadings. The essence of each model is captured in Eqns 2 and
4. In the extrinsic quality model, Q represents extrinsic features
such as training history or health status. In the intrinsic quality
model, the causal variables represent underlying features of
neuromuscular and musculoskeletal design that have net agonistic
rather than antagonistic effects on the performances. These models
are the extremes of a continuum. Walker (2015b) developed a
model in which PC1 had all positive loadings but there was no
general factor generating the data; instead, PC1 was causally
generated by both the extrinsic Q and two intrinsic M-P traits.
With this kind of generating model, WBC correlations are the
wrong answer to the question ‘what are the correlations adjusted
for extrinsic quality?’ Or, the right answer (a quality-free
correlation matrix) to a question that we do not care about,
‘what is the residual correlation after factoring out both intrinsic
and extrinsic quality?’ Even more likely is an interaction between
intrinsic and extrinsic factors. For example, there could be
underlying M-P traits that increase both high-power and high-
endurance performances, which, in turn, gives the athlete the
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confidence to train harder, recover better, eat better and avoid
behavior that might increase infection. Or, the intrinsically ‘good
athletes’ with underlying M-P traits that make them better at both
high-power and high-endurance performances are recruited to
schools and coaches that have better training programs.
A necessary consequence of the above argument is our inability

to use either a matrix of positive correlations or its decomposition
by PCA to distinguish between the intrinsic and extrinsic quality
models. This is the challenge introduced earlier. Extrinsic quality
wewant to control; intrinsic quality we do not – it is what wewant to
discover! But if we cannot know what causally generates PC1, we
cannot knowwhat we are controlling by removing the effect of PC1.
Ideally, we would experimentally control extrinsic quality by
raising individuals in a common-garden design where variation in
the level of training, diet, temperature, parasites and pathogens is the
same across individuals. Such a design is really only possible with
laboratory animals.
Limiting performance measures to elite athletes must greatly

reduce the contribution of extrinsic quality components to PC1. If
the extrinsic quality contributions to the variance on the PC1 are
indeed small relative to intrinsic quality contributions, then the
positive correlations measured between the decathlon events should
largely be faithful estimates of the functional organization of the
causal mapping from M-P traits to performance. These positive
correlations might reflect correlated, intrinsic variation in the ability
of athletes to predict maximum, safe and sustainable strain and strain
rates for an activity, unconscious CNS control of maximum strain
and strain rates, and CNS coordination of complex motor behaviors
required for skilled movement (Tucker, 2009; Martens and Collier,
2011).
If, however, extrinsic quality contributions to PC1 are large,

then we have some evidence of a few, small trade-offs in the
decathlon data, including a small trade-off between high
endurance (1500 m speed) and high power (sprint speed). Small
effects are potentially important in both evolutionary and
ecological dynamics, so we do not trivialize the small effect size
(−0.07) of the quality-free correlation between 1500 m and 100 m
speeds (indeed, we give an example of how it affects placing in the
100 m finals of the NCAA championships). Nevertheless, we do
not believe the small, negative correlations in the quality-adjusted
decathlon data are good evidence for an underlying trade-off
generated by the architecture of the form–function map. The issue
is not so much the magnitude of these correlations but their
meaning. The quality-free correlations are adjusted for quality, but
this quality likely contains both intrinsic and extrinsic components
and a PCA cannot quantify their relative magnitudes.
Consequently, we strongly caution against citing our results as
evidence of net functional trade-offs free of extrinsic quality. The
high frequency of positive correlations among both human and
non-human performance traits that are putatively optimized by
opposing musculoskeletal designs, such as muscle fiber type,
musculoskeletal gearing ratios or body shape, is surprising, and
individual quality, with its intrinsic and extrinsic components, is a
compelling model to explain these correlations. The physiological
explanation of quality, and of the positive correlations more
generally, remains to be discovered.
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Fig. S1: The distribution of the raw, Pearson product-moment correlations of 
the A) NCAA data and B) simulated data.
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Fig. S2: The distribution of the errors for the four adjustment methods 
estimated by Monte Carlo simulation of the soccer data. Box plots with the
median, 50% and 95% intervals represented by the horizontal line, the box,
and the tips of the whiskers. Correlations are partial (PCOR), regression
residual (RR), Wright’s uncorrected (WUC) and bias corrected (WBC).
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Table S1. Pearson and quality-adjusted correlations for soccer data. Pear- son, 
partial (PCOR), regression residual (RR), and Wright’s bias corrected
(WBC) correlations are given in Supplement Table 1. The error intervals
associated with PCOR, RR, and WBC method are illustrated in Supple-
ment Fig. 2 and were computed using Monte Carlo simulation of 1000 data
sets with a distribution of correlations similar to that of the soccer data (see
Methods) The Pearson correlations are from Table 1 of Wilson et al. (2014).
The regression residual correlations are from Table 2 of Wilson et al. (2014).
The WBC correlations were computed using the PC1 loadings in Table 3
of Wilson et al. (2014) (these loadings are estimates of the Quality path
coefficients α).

Event A Event B Pearson PCOR RR WBC
1 Squat X1500 0.16 -0.02 -0.52 -0.10
2 Jump X1500 0.18 -0.08 -0.41 -0.11
3 Jump Squat 0.47 0.18 -0.20 0.03
4 Sprint X1500 0.32 0.28 0.05 0.11
5 Sprint Squat 0.29 0.14 -0.06 -0.03
6 Sprint Jump 0.37 0.27 -0.25 0.01
7 Agility X1500 0.28 0.22 -0.44 -0.01
8 Agility Squat 0.50 0.30 0.15 0.06
9 Agility Jump 0.63 0.51 -0.02 0.15

10 Agility Sprint 0.24 -0.09 -0.52 -0.12
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