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Dual foraging and pair coordination during chick provisioning
by Manx shearwaters: empirical evidence supported by a
simple model
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ABSTRACT
The optimal allocation of time and energy between one’s own survival
and offspring survival is critical for iteroparous animals, but creates a
conflict between what maximises the parent’s fitness and what
maximises fitness of the offspring. For central-place foragers,
provisioning strategies may reflect this allocation, while the distance
between central-places and foraging areas may influence the
decision. Nevertheless, few studies have explored the link between
life history and foraging in the context of resource allocation. Studying
foraging behaviour alongside food load rates to chicks provides a
useful system for understanding the foraging decisions made during
parent–offspring conflict. Using simultaneously deployed GPS and
time–depth recorders, we examined the provisioning strategies in
free-living Manx shearwaters Puffinus puffinus, which were caring for
young. Our results showed a bimodal pattern, where birds alternate
short and long trips. Short trips were associated with higher feeding
frequency and larger meals than long trips, suggesting that long trips
were performed for self-feeding. Furthermore, most foraging was
carried out within 100 km of sea fronts. A simple model based on
patch quality and travel time shows that for Manx shearwaters
combining chick feeding and self-maintenance, bimodal foraging trip
durations optimise feeding rates.

KEY WORDS: Foraging strategy, Puffinus puffinus, Bio-logging,
GPS, Diving

INTRODUCTION
Resource allocation between parents and their offspring during
reproduction is a central issue in life-history theory (Ydenberg et al.,
1994; McNamara and Houston, 1997) and the outcomes of parent–
offspring conflict are inextricably linked with fitness (Nur, 1988). In
iteroparous species, life-history theory predicts that individuals
should balance the cost of their own survival and future reproductive
success against investment in current reproduction (Stearns, 1992).
For instance, current parental effort may be increased in parents in
good condition, but decreased in parents in poor condition so that
they can maintain their own body condition.
Seabirds are on the extreme slow end of the life-history

continuum: marine resources are generally patchily and scarcely

distributed, and are assumed to be unpredictable (but see
Weimerskirch, 2007), making it difficult for pelagic seabirds to
regulate foraging patterns and in particular chick provisioning.
Possible mechanisms that control provisioning behaviour in adult
Procellariiforms have been reported, but this issue is still
contentious and seems to be species specific with no clear
phylogenetic pattern. Indeed, while provisioning behaviour is
shaped by chick condition in most Procellariiformes such as
northern fulmars Fulmar glacialis (Hamer and Thompson, 1997),
Manx shearwaters Puffinus puffinus (Hamer et al., 1999), yellow-
nosed albatrosses Thalassarche chlororhynchos (Weimerskirch
et al., 2000) or wedge-tailed shearwaters Puffinus pacificus
(Baduini, 2002), it is determined by adult body mass in two
species of the Puffinus genus: sooty shearwaters Puffinus griseus
and short-tailed shearwaters Puffinus tenuirostris (Weimerskirch,
1998; Weimerskirch and Cherel, 1998). But evidence shows that
tight regulation of pair coordination in foraging schedule can be
critical in species with bi-parental care to ensure that energy
demands of the offspring are met without over-feeding (Harris and
Wanless, 2011). However, the relative importance of pair
coordination in chick provisioning is still unclear.

Some studies have suggested that feeding rates in pelagic seabirds
are fixed by inherent internal rhythms so that parents feed their
offspring regardless of offspring condition (Ricklefs, 1992; Hamer
and Hill, 1993). Other studies report that parents show more
flexibility in feeding rates than previously thought, so that they do
modify feeding patterns according to the offspring’s condition
(Hamer and Hill, 1993; Bolton, 1995; Weimerskirch, 1995; Tveraa
et al., 1998). Furthermore, sex-specific differences in chick-
provisioning behaviour during the breeding season among
monomorphic birds have been found in a number of species (e.g.
Hamer et al., 2006; Elliott et al., 2010).

A dual foraging strategy, where parents alternate or mix short and
long trips, is one example of how parental seabirds can regulate
foraging patterns. During short trips, parents forage at local oceanic
shelf areas to maximise offspring provisioning rates because the costs
of commuting with a food load for the chick are kept low (Cuthill and
Kacelnik, 1990). In contrast, during long trips, parents can travel
further to exploit inherently richer but more distant areas of deep
oceanic water or seasonally stable sea fronts – boundaries between
waters of different density that enhance primary productivity by
inducing an upward supply of nutrients (Mahadevan and Archer,
2000). At such hot spots, parents can replenish their own reserves
without paying the costs of repeated commuting (Matsumoto,
2008). A disadvantage of executing the long trips for offspring is
that feeding rates to offspring are lower because commuting time is
longer (Chaurand and Weimerskirch, 1994; Weimerskirch et al.,
1994; Weimerskirch, 1998). Furthermore, energetic or nutritional
requirements often differ between parents and their young (Murphy,Received 5 February 2015; Accepted 29 April 2015
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1996), and thus foraging locations may vary depending on the
intended recipient of food (Markman et al., 2004). A number of
Proceraliiform seabirds execute a bimodal foraging pattern; these
include thin-billed prions Pachyptilla belcheri (Weimerskirch et al.,
1994), yellow-nosed albatrosses Diomedea chlororynchos (Pinaud
et al., 2005), wandering albatrosses D. exulans (Weimerskirch et al.,
1994), sooty shearwaters P. griseus (Weimerskirch, 1998), little
shearwaters P. assimilis (Booth et al., 2000), Cory’s shearwaters
Calonectris diomedea (Granadeiro et al., 1998; Magalhães et al.,
2008), streaked shearwatersC. leucomelas (Ochi et al., 2010),Buller’s
albatrosses Thalassarche bulleri (Stahl and Sagar, 2006) and blue
petrels Halobaena caerulea (Chaurand and Weimerskirch, 1994), as
do a number of Alcids [little auks Alle alle (Welcker et al., 2009;
Brown et al., 2012; Jakubas et al., 2012)] and Sphenisciformes [little
penguins Eudyptula minor (Saraux et al., 2011); Adélie penguins
Pygoscelis adeliae (Ropert-Coudert et al., 2004)]. Yet dual-foraging
strategies are not ubiquitous among seabirds (Phillips et al., 2009).
Furthermore, factors affecting the parents’ decision to undertake a
long or short foraging trip may be species specific. Previous studies
have mainly focused on the frequency distribution of trip duration or
the use of different foraging habitats, but few studies have connected
those variables to meal mass, chick-feeding rates or foraging
behaviour at sea (Phillips et al., 2009).
Manx shearwaters (Puffinus puffinus) are widely distributed in the

North Atlantic Ocean (Brooke, 1990). This species shows a typical
Proceraliiforme life-history pattern with a single-egg clutch and slow
chick development that averages 70 days until fledging (Brooke,
1990). The species exhibits bi-parental care during both incubation
and the chick-rearing period, and colony arrival and departure only
occur at night (Riou and Hamer, 2008). Variation in foraging trip
durations and foraging destinations during chick-rearing have been
reported (Guilford et al., 2008), making shearwaters good candidates
for testing foraging strategies from the standpoint of resource
partitioning. The purpose of this study was to combine at-sea data
(movement patterns and diving behaviour) with at-colony data
(breeding schedule, meal mass delivered to young) collected from
breeding shearwaters to test for and analyse dual foraging strategies in
the context of regulation of provisioning (i.e. fasting duration of
offspring, chick growth rates).We develop a simplemodel describing
the energetics of foraging and show that model predictions support
our interpretation of the empirical evidence on the importance of dual
foraging in chick provisioning.

RESULTS
We retrieved and successfully downloaded GPS and time–depth
recorder (TDR) data from 17 Manx shearwaters (Puffinus puffinus
Brünnich 1764) birds out of the 22 originally deployed – the other 5
birds returned without a GPS logger. While bio-logging methods
may impact behaviour as reported in Phillips et al. (2003), breeding
success in our study plot (0.69) was similar to that of the
undisturbed plot (0.60) at Skomer Island.
GPS recorders logged 15 complete foraging trips from females

and 29 complete foraging trips from males during chick rearing. No
sex difference in foraging parameters was detected (trip duration:

F1,43=0.729, P=0.398; travelled distance: F1,16841=1.773, P=0.183;
flight speed: F1,16841=2.614, P=0.106; food load: F1,42=0.750,
P=0.391; average trip similarity: t=−1.695, d.f.=13.739, P=0.113),
which is consistent with Dean (2012), and therefore data from both
sexes were pooled. Trip duration and total distance travelled per trip
were highly correlated (r=0.84). The distribution of foraging trip
durations showed three peaks, with short trips lasting 1–3 days,
medium trips lasting 4–7 days and long trips, 8–11 days (Fig. 1).
Mean adult body mass was 417±38 g before and 406±30 g after
each trip. Adult body mass was independent of trip durations
(ΔAIC=0.6) with body mass before short trips (416±35 g), medium
trips (406±42 g) or long trips (437±42 g), or after short trips
(407±28 g), medium trips (397±30 g) or long trips (412±44 g).
Meal size was similar across the three trip duration types (short trip:
40±4.89 g; medium trip: 50±5.67 g; long trip: 53±12.73 g). Among
these three modes of trip duration, however, shorter trips appeared to
be significantly more productive, as shown in Fig. 2 because
the provisioning rate (meal mass per day) was much higher for 1- or
2-day trips than for longer trips (ΔAIC=−9.27; Fig. 2).

Alternatively, prey quality may trade off with variability in food
load, so that extending travel time and distance may increase the
chance of finding high quality prey items, which are often rare and
therefore less reliably found. This possibility is known as the
quality–variability trade-off hypothesis (Litzow et al., 2004). To test
this idea, we discretised the distribution of trip durations again into
short, medium and long durations and computed the standard
deviation of food load (s.d.fl) within each category. The empirical
distribution of s.d.fl was estimated by bootstrapping food load
observations 1000 times within each category. While s.d.fl in the
short category was smaller than in the long category, s.d.fl in the
medium category was the lowest, and error bars across all three bins
largely overlapped (Fig. 1), thereby suggesting that the quality–
variability trade-off hypothesis does not explain the results.

Fig. 3 shows the contour maps of activity patterns in resting, flying
and foraging individuals. While both resting and flying behaviours
weremade at awide rangeof locations (Fig. 3A,B), foragingwasmore
highly concentrated around the colony (Fig. 3C). Distance between
dive locations (=foraging locations) and the colony showed a clear
bimodal pattern (Fig. 4A). In contrast, distance betweendive locations
and front lines (as shown in Fig. 3) showed a unimodal pattern
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Fig. 1. Density of trip duration during chick-rearing period in the Manx
shearwater (Puffinus puffinus). The histogram represents the distribution of
trip durations, split into three categories (separated by black vertical broken
lines); within each category, the s.d. of food load (in grams) is shown as red dot
(right vertical scale); red vertical bars represent 1 s.d., estimated by
bootstrapping binned food loads 1000 times.

List of symbols and abbreviations
EHFCday daily energy gains for chicks
IPQ index of patch quality
TDR time–depth recorder
TPQ25 time required to accumulate 25 points on the IPQ scale
tT travel time
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(Fig. 4B). The number of dives per trip increased slightly but
significantly with trip duration (ΔAIC=−13.37), whereas daily
number of dives decreased with trip duration; shorter trips had
higher number of dives per day (ΔAIC=−5.70). The duration of
foraging trips did not affect meal size per trip (ΔAIC=1.68), but
provisioning rate (g day−1) decreased with trip duration. Daily chick
growth rate (from hatching to the last meal) was 6.47±5.22 g and the
provisioning period was 63.67±2.77 days (N=15). The frequency of
the interval between subsequent feeds decreased after 3 days
regardless of the starting condition, but at least half of these
intervals are less than 2 days (Fig. 5).

Modelling of dual foraging
In our data, Manx shearwaters showed a tri-modal distribution of
trip durations under visual inspection (Fig. 1). To relate this foraging
pattern to provisioning, we estimated daily energy gains for chicks
(EGFCday), which we plotted as a function of travel time in parallel
with estimated index of patch quality (IPQ). Our modelling results
(Fig. 6) show that IPQ as a function of travel time is indeed tri-
modal, as in Fig. 1, and that EGFCday is 50% of its maximum value
only for short trips (<10 h; Fig. 6). Importantly, this result is robust
to the choice of constants used in our modelling (supplementary
material Fig. S2).

DISCUSSION
Central-place foraging theory predicts that animals should use
distant foraging patches only when energy intake rate increases with
distance from the colony (Charnov, 1976; Ropert-Coudert et al.,
2004). While variation in duration of foraging trips is well known in
pelagic seabirds, few studies have investigated its relationship with
meal size to offspring in wild animals (Wanless et al., 1993; Ainley
et al., 1998). Here, we show that Manx shearwaters performed a
dual foraging strategy in the sense that some trips (the short ones)
are for chick provisioning whereas longer trips are for self (Fig. 2).
Shearwaters did not increase the meal size delivered to the chick
with the travel time. Instead, young shearwaters gained more energy

per time unit as adults brought more food back to the chick when
they performed short trips. In contrast to other Procellariiformes,
which feed young on a partly digested diet that can contain liquid oil
(up to 50%), Manx shearwaters deliver little digested food during
both short and long trips (Brooke, 1990). As the average number of
dives and meal mass delivered to chicks per day decreased with
increasing trip length, chicks did not benefit directly from longer
trips. We also showed that the quality–variability trade-off
hypothesis (Litzow et al., 2004) does not explain the dual
foraging pattern.

Foraging mode change-over was not initiated by parents reaching
the critical lower body mass, but rather appeared to be coordinated,
because chicks were constantly fed by parents (the interval between
feeding was mostly 1 or 2 days) and chicks were rarely left unfed for
more than 3 days (Fig. 5). We speculate that such a dual-foraging
strategy is a consequence of a partner’s long trip duration, suggesting
that pair-coordination during chick-provisioning shapes foraging
patterns, as is the case during incubation change-overs (Brooke,
1990).

Some pelagic seabirds are known to employ a dual-foraging
strategy where parents alternate frequent short trips and a single long
trip to meet the energetic demands of offspring while maintaining
their own condition (Granadeiro et al., 1998; Welcker et al., 2009).
For example, Cory’s shearwaters use flexible foraging trip durations
and parents increase body mass after long trips (Granadeiro et al.,
1998). Here, shearwaters changed foraging areas between short and
long trips, but in both cases, the foraging areas were highly restricted
to an area close to a sea front (Fig. 4). Thus, birds adjusted both trip
duration and foraging locations in relation to the demands of
offspring or themselves. This raises a question as to why birds use
two foraging patches instead of foraging only at the nearby patch,
given that travel distance to those patches greatly differ. The area of
the Irish Sea where shearwater parents performed long trips is
known to be a ‘hot spot’ for seabirds (Begg and Reid, 1997), and lies
to the north and west of the Irish Sea front (Pollock et al., 1997;
Dean et al., 2012). As a front, this region is expected to be highly
productive (Mahadevan and Archer, 2000) and possibly more so
than the Celtic Sea. Indeed, IPQ is highest at the distant foraging
area in our study. Thus, it is likely that birds increased travel distance
to forage at this better foraging site during long trips. One potential
explanation for the dual strategy we see here, then, is that short trips
lead to foraging near the colony, in areas highly exploited that lead
to steady but average-to-low rewards, whilst longer trips are taken
once chick provisioning is done to forage in farther off areas, where
fishing may become more unpredictable with distance but is
potentially of higher reward (Weimerskirch, 2007).

In support of this explanation, our model demonstrates that net
rate of gain per day decreases with distance and travel time for
chicks, but increases for foraging parents themselves, suggesting an
advantage of foraging nearby to the colony for chicks. However, we
did not find that parents increased their body mass after long trips.
Rather, the body mass was similar after both short and long trips.
We do not have a definitive answer as to why parents did not
increase their body mass if they performed long trips to maintain
their own body condition. A possible explanation for the
contradiction is that during long trips shearwaters foraged on
better quality food (e.g. more oil), which would not have been
immediately detectable using mass measurements alone (Einoder
et al., 2013). Future studies could benefit from evaluating the
energetic content of prey throughout the chick-rearing period to
examine whether variation in foraging strategies is associated with
variation in prey quality. Moreover, increasing body mass would

S

S

S
S

S

S

S

S

S

S

S
S

S

S

S

S

20 40 60 80
0

20

40

60

80

100

No. of dives day–1

P
ro

vi
si

on
in

g 
ra

te
 (g

 d
ay

–1
)

M
M

M

ML L
L

L LL L
L

S 

L
M

1–3 days
4–7 days
8–11 days

Fig. 2. Distribution of provisioning rate and frequency of dives in chick-
rearing Manx shearwaters. Each symbol indicates one trip type (S: short;
M: medium; L: long). The dashed line represents the linear mixed model fitted
for short trip durations (S).

2118

RESEARCH ARTICLE The Journal of Experimental Biology (2015) 218, 2116-2123 doi:10.1242/jeb.120626

Th
e
Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120626/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120626/-/DC1


 0
.0

5 

 0.05 

 5
0.

0  0
.0

5 

 0.05 

 0.05 

 0.1 

 0.1 

 0.15 

 0.2 

 0.25 

 0
.3

 
 0

.3
5 

 0
.4

 

 0.05 

 0.05 

 0
.0

5 

 0.05 

 0.1 

 0.1 

 0.15 

 0.15 

 0.15 

 0.2 

 0.2 

 0
.2

 

 0.25 

 0.
25

 

 0
.2

5 

 0
.3

 

 0.3 

 0.3 

 0
.3

5 

 0.4 

 0
.4

5 

 0.1 

 0.1 

 0.1  0.1 

 0.1 

 0.2 

 0.2 

 0.2 

 0.2 

 0.2 

 0
.3

 

 0
.3

 

 0.3 

 0
.4

 

 0.4 

 0.4 

 0
.5

 

 0.5 

 0.7 

−10 −8 −6 −4
Longitude (deg)

La
tit

ud
e 

(d
eg

)

A

B

C

51

52

53

54

51

52

53

54

51

52

53

54

*

*

*

Fig. 3. Contour maps of activities of chick-rearing Manx
shearwaters in 2013. (A) Resting (orange), (B) flying (green)
and (C) foraging (blue). The intensity of shading indicates the
density of the raw data. The asterisk indicates the position of
Skomer Island. The approximate locations of the Irish Sea front
(red line) and Celtic Sea front (black line) are shown on each
map (after Simpson and Hunter, 1974).

2119

RESEARCH ARTICLE The Journal of Experimental Biology (2015) 218, 2116-2123 doi:10.1242/jeb.120626

Th
e
Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



also increase the cost of travelling (Kacelnik and Cuthill, 1990).
Manx shearwaters use intermittent flapping flight for the long-range
trips (Spivey et al., 2014) and thus, not only meal size, but also adult
body mass, may be modulated to minimise travel cost because flight
costs must increase with body mass.

MATERIALS AND METHODS
Study site and birds
The study was carried out at Skomer Island (51°44′N, 5°17′W), Wales,
UK, during a single breeding season (July–August 2013) to avoid
potentially confounding effects of inter-annual environmental variability.
All study birds were ringed as part of the long-term monitoring program
carried out by Oxford University since 2006. Parents were sexed where
possible by cloacal inspection during the laying period (Gray and Hamer,
2001). Nests were visited daily to monitor breeding progress (laying dates,
hatching dates, fledging dates where possible). All chicks at the monitored
burrows in the colony were weighed daily. To determine food load from
parents to their chicks, we weighed chicks every evening at 8pm before

adult shearwaters arrived at the colony and checked study burrows every
20 min through the night (typically between 23:00 h–04:00 h). To reduce
disturbance, we used knock-down sticks at the entrance (Shoji and
Gaston, 2010), only checking nests when sticks were displaced. When we
found an adult in a study burrow, we blocked the nest and left at least
20 min to allow parents to feed young before weighing both parent and
chick. All work was conducted after ethical approval by the Countryside
Council for Wales, the Skomer Island Advisory Committee and the
British Trust for Ornithology (BTO permits: T.G., 5311; C.P., 660;
A.S., 5939).
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Foraging behaviour
To study the foraging behaviour of chick-rearing shearwaters, we
simultaneously deployed 1 Hz CEFAS G5 TDRs (sampling interval=1 s,
recording duration=7 or 14 days) weighing 2.7 g, attached to a hand-made
darvic leg ring, and GPS loggers (sampling interval=5 min, recording
duration range=1–11 days; unpackaged i-gotU GT-120: Mobile Action,
New Taiwan City, Taiwan) weighing 10–12 g, fitted dorsally to each bird
using Tesa tape underlying a small group of contour feathers (Guilford et al.,
2008) on 14 males and 8 females from the study colony for 1–7 successive
foraging trips. Birds were taken from study burrows by hand through a short
access tunnel and weighed at device deployment and retrieval. Handling
time for capture and retrieval was always less than 15 min.

Data analysis
All analyses were performed in R (R Development Core Team, 2014). We
quantified trip duration, total distance travelled and foraging range (the
maximum distance from the colony). All positional fixes were converted to
metres using the Universal Transverse Mercator coordinate system.
Horizontal ground speed was calculated from interpolated positions by
using cubic splines of GPS position fixes.

To monitor diving behaviour, we used diveMove (Luque and Fried,
2011), which corrected for device drift. We obtained dive depth, duration
and surface pause duration for all dives and determined bouts based on
sequential differences (Mori et al., 2001). Only dives deeper than 1 m were
analysed because shallow dives are often associated with non-foraging
behaviour, such as bathing or socialising.

Activity was determined by combining GPS and TDR data: GPS-
recorded speeds were used to determine ‘flying’ when birds were moving
faster than 5 km h−1 (supplementary material Fig. S1; see also Guilford
et al., 2008); TDR-detected dives as per diveMove indicated ‘foraging’; the
remainder of the time (speed<5 km h−1; no dives) was classified ‘resting’.
Positions of seasonally stable fronts (Celtic Sea Front and Western Irish Sea
Front) were obtained from the literature (Simpson and Hunter, 1974) to
examine effects of the foraging locations in shearwaters as shown in Scales
et al. (2014).

Analysis of average trip similarity was based on the nearest neighbour
analysis (NNA; Freeman et al., 2011). For this, trip information was
extracted from the GPS data, a foraging trip starting when the bird flies
outside of a 2 km radius around the colony and ending when it comes back
within this radius. Because we were not interested in homing behaviour but
in foraging behaviour, only outbound trips were used. These are defined by
the period between the start of each trip and the point along the route that is
most distant from the colony. Route similarity between two trips is then
computed by the match point distance, which is the sum of the minimum
distances between each positional fix along a focal trip versus a
comparison trip. The resulting distance matrix is symmetrised by taking
the average match point distance between each pair of trips. The average
trip similarity for each trip is computed by taking the row (or column)
average. These averages for males and females were then compared with
Welch’s t-test.

We used an information theoretic approach to evaluate the relationship
between (1) trip duration and (2) locations, and provision rates (g day−1),
and number of dives per day, meal mass per trip and total number of dives
per trip. All analyses were completed using linear mixed models with a
maximum-likelihood fitting method allowing for inter-model comparisons
with the lme4 package R (Bates and Maechler, 2009). Data were collected
more than once from individuals and so to account for pseudo-replication,
individual identity was included as a random effect in the models (Buckley
et al., 2003). Model selection was based on Akaike’s information criterion
(AIC) and ΔAIC from the null model (intercept-only). Means are presented
as ±1 standard deviation unless otherwise stated. We checked for deviations
from normality and homoscedasticity by plotting fitted and observed values
and residuals.

Dual-foraging modelling
We aimed to identify dual foraging in the Manx shearwater by describing
how food load size varies as a function of travel time by modifying the
model presented in Ropert-Coudert et al. (2004). When the travel time

increases (from short to long), it is expected that the food load maximising
provisioning rate should also increase (Charnov, 1976) to balance energy
gain against expenditure. When seabirds exhibit a dual-foraging mode, it is
likely that provisioning occurs during short trips, while self-feeding takes
place during long trips: indeed, the cost of loading food is expected to
increase with flight time and distance (Kacelnik, 1984). Here, we used the
index of patch quality (IPQ) as a proxy for prey richness estimated based on
the dive profiles (Mori et al., 2002; Shoji et al., 2014). The rationale behind
IPQ is as follows. During foraging, it is expected that parameters associated
with dive profiles (e.g. duration of diving, descending, ascending as well as
bottom and surface times) reflect prey richness (Mori et al., 2002). This
assumes that patch residence time in diving animals should be positively
correlated with both travel time from surface to a patch and patch richness, in
order to maximise energy intake per units of time (Stephens and Krebs,
1986). Although the accuracy of the index is relatively rough because of the
noise inherent in data logger, IPQ has been shown to reflet prey richness in
diving animals (thick-billed murres Uria lomvia: Mori et al., 2002; Elliott
et al., 2008, Weddel seals Leptonychotes weddellii: Mori et al., 2005).
Detailed descriptions for the calculation of IPQ are available in Mori et al.
(2002) and Elliott et al. (2008).

Taking inspiration from modelling done by Ropert-Coudert et al. (2004),
we examined how variation in travel time [which is highly correlated
(r=0.84) to travel distance] affects the rate of energy gain by adults and
chicks. We assumed that birds had a constant flight speed (derived
empirically: see supplementary material Fig. S1) and that (1) patch quality,
measured on the IPQ scale, is gained during 6 h of foraging; (2) adults only
bring back food when they have collected 25 points on the IPQ scale; the
time required to accumulate these 25 points is henceforth denoted TPQ25.
Daily energy gain for chicks (EGFCday) is inversely proportional to the time
to gain (TPQ25):

EGFCday ¼ 25=TPQ25: ð1Þ

In turn, the time to gain 25 IPQ points includes travel time tT plus foraging
time. Foraging time is inversely proportional to IPQ, as it is expected that
prey are easy to forage in a high-quality patch, so that:

TPQ25 ¼ tT þ 6=IPQ: ð2Þ

Altogether, we expect that EGFCday is inversely proportional to tT. From
the empirical estimation of IPQ, we can then relate foraging strategy to
both travel time and provisioning. As the choice of the constants (6 h; 25
points) is arbitrary, we examined the robustness of our predictions to these
values.
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Magalhaẽs, M. C., Santos, R. S. and Hamer, K. C. (2008). Dual-foraging of Cory’s
shearwaters in the Azores: feeding locations, behaviour at sea and implications for
food provisioning of chicks. Mar. Ecol. Prog. Ser. 359, 283-293.

Mahadevan, A. and Archer, D. (2000). Modeling the impact of fronts and
mesoscale circulation on the nutrient supply and biogeochemistry of the upper
ocean. J. Geophys. Res. 105, 1209-1225.

Markman, S., Pinshow, B., Wright, J. and Kotler, B. P. (2004). Food patch use by
parent birds: to gather food for themselves or for their chicks? J. Anim. Ecol. 73,
747-755.

Matsumoto, K. (2008). Relationships between the dual foraging strategy of the
streaked shearwater and the marine environment during chick-rearing effort. In
Graduate School of Fisheries Science, vol. PhD. Hakodate: Hokkaido University.

McNamara, J. M. and Houston, A. I. (1997). Currencies for foraging based on
energetic gain. Am. Nat. 150, 603-617.

Mori, Y., Yoda, K. and Sato, K. (2001). Defining dive bouts using a sequential
differences analysis. Behaviour 138, 1451-1466.

Mori, Y., Takahashi, A., Mehlum, F. and Watanuki, Y. (2002). An application of
optimal diving models to diving behaviour of Brünnich’s guillemots. Anim. Behav.
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Supplementary figures
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Figure S1: Manx shearwater movement speeds. (a) Trace of speeds recorded by the GPS loggers.
Individual birds are identified by alternating colours. (b) Distribution of horizontal surface speed
during foraging trips of razorbills (N = 17 birds, n = 44 trips; only speeds exceeding 5 km/h
are considered – see broken horizontal line in panel (a). The black broken line in (a) indicates
the cut-off value of 5 km/h used as a flight threshold in this study.
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Figure S2: Robustness to assumptions of our IPQ-based model for explaining dual foraging in
Manx shearwaters. Black lines indicate observed values of IPQ and red line indicates estimated
daily energy gain for chicks (EGFCday), both as a function of distance to colony (or equivalently,
travel time). In the main text, we assumed that birds had a constant flight speed and that:
(i) patch quality, measured on the IPQ scale, is equivalent to six hours of foraging; (ii) adults
only bring back food when they have collected 25 points on the IPQ scale; the time required
to accumulate these 25 points is henceforth denoted TPQ25. We here show that our results are
robust to our choice for the time to gain of 25 points as well as 50 points. Similarly, we presented
that patch quality, measured on the IPQ scale, is equivalent to six hours of foraging as well as ten
hours of foraging: (a) TPQ25 with six hours of foraging; (b) TPQ50 with six hours of foraging;
(c) TPQ25 with ten hours of foraging; (d) TPQ50 with ten hours of foraging. Horizontal grey
broken lines indicate the values of EGFCday that were reduced to 50% of the maximum values.
Vertical grey broken lines indicate the first IPQ mode. In all four cases (panels), the first IPQ
mode delivers at least 50% of daily energy gain to chicks.

The Journal of Experimental Biology 218: doi:10.1242/jeb.120626: Supplementary Material 

The Journal of Experimental Biology | Supplementary Material



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.32000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.32000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    34.69606
    34.27087
    34.69606
    34.27087
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50394
    8.50394
    8.50394
    8.50394
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


