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ABSTRACT
When animals move across a landscape, they alternate between
active searching phases in areas with high prey density and
commuting phases towards and in-between profitable feeding
patches. Such active searching movements are more sinuous than
travelling movements, and supposedly more costly in energy. Here
we provide an empirical validation of this long-lasting assumption. To
this end, we evaluated simultaneously energy expenditure and
trajectory in northern gannets (Morus bassanus) using GPS loggers,
dive recorders and three-dimensional accelerometers. Three
behavioural states were determined from GPS data: foraging, when
birds actively searched for prey (high tortuosity, medium speed);
travelling, when birds were commuting (straight trajectory, high
speed); and resting (straight trajectory, low speed). Overall dynamic
body acceleration, calculated from acceleration data, was used as a
proxy for energy expenditure during flight. The impact of windscape
characteristics (wind force and direction) upon flight costs was also
tested. Energy expenditure of northern gannets was higher during
sinuous foraging flight than during more rectilinear travelling flight,
demonstrating that turns are indeed costly. Yet wind force and
direction also strongly shaped flight energy expenditure; within any
behavioural state it was less costly to fly with the wind than against
it, and less costly to fly with strong winds. Despite the major flight
costs of wind action, birds did not fully optimize their flight track
relative to wind direction, probably because of prey distributions
relative to the coastline and wind predictability. Our study illustrates
how both tortuosity and windscape shape the foraging costs of
marine predators such as northern gannets.

KEY WORDS: Energetics, Accelerometry, State–space model,
Foraging, Seabird, Wind

INTRODUCTION
Animal energetics play a central role in ecology by conditioning
individual fitness, population processes and, ultimately,
trophodynamics and ecosystem functioning (Brown et al., 1993).
Energy balance is determined by energy expenditure and food
acquisition, and optimal foraging theory predicts that animals should
minimise the former while maximizing the latter (Bell, 1991). The
study of energy expenditure in foraging animals is therefore
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particularly relevant, yet levels of energy expenditure associated
with foraging are usually estimated using theoretical approaches or
measured in small animals in captivity (McNab, 2002). Energetics
studies in large and free-ranging animals are scarce, because of
methodological challenges in recording simultaneously animal
movements, energy expenditure and environmental variables that
may influence movement costs. Wild animals can move on land, in
water or in the air, and it is probably in the air that it is the most
difficult to measure energy expenditure, because of technical
limitations (Schmidt-Nielsen, 1972).

A vast body of work addresses the biomechanics of bird flight
using theoretical and experimental approaches (Tobalske, 2007).
The main limitations of experimental approaches performed in wind
tunnels are that flight energetics are only measured in birds exposed
to headwinds, which does not represent the whole range of wind
directions encountered under natural conditions, and that conditions
in wind tunnels are often turbulent, which can affect flight energetics
(Pennycuick et al., 1997). In addition, studies concerning energetics
of manoeuvring, performed under experimental conditions, are often
not interpreted in the general context of foraging theory (e.g.
Hedrick and Biewener, 2007; Su et al., 2012; but see Wilson et al.,
2013). The prediction is that sinuous flight is more costly than
straight flight because of the additional mechanical costs
(Pennycuick, 1978), but this has never been tested empirically. To
our knowledge, the energetic costs of turns have only been measured
in humans (Minetti et al., 2011; Wilson et al., 2013). In a wider
context, the cost of foraging movements can be measured either per
time unit, considering that animals have to maximize their net
energy intake per unit foraging time, or via their energy balance,
because animals have to maximize the ratio of energy gained to
energy spent (Ydenberg et al., 1994). Along these lines, the cost of
tortuosity can be seen as the time it takes to cover a longer distance
(Lusseau, 2004), or by an increase in the rate of energy expenditure
while turning (Minetti et al., 2011; Wilson et al., 2013). Here we
focus specifically on the latter aspect.

Until recently, it was very difficult to measure precisely the
energy expenditure of free-ranging animals in real time. The doubly
labelled water method allows the calculation of field metabolic rates
but does not allow determination of energy expenditure over fine
temporal scales (Shaffer, 2011). The first method used to this end
consisted of equipping animals with loggers recording heart rate
(Butler et al., 2004). This approach can be invasive for wild animals
when it requires surgery, and can be hard to extrapolate if performed
on captive animals, which do not have the same physical training as
wild animals, and thus have different rates of energy consumption
(Bevan et al., 1994; Ward et al., 2002). An alternative technique
consists of equipping animals with three-axis accelerometers. This
technique enables calculation of energy expenditure from dynamic
body acceleration when the animal is active (Wilson et al., 2006),
the main assumption being that energy expenditure is closely related
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to mechanical work. Validations of this approach have been
performed using oxygen consumption (Wilson et al., 2006), the
doubly labelled water technique (Elliott et al., 2013) or heart rate
measurements (Halsey et al., 2008). The limitation of the dynamic
body acceleration technique is that it does not allow the estimation
of energy expenditure resulting from basal metabolic rate, digestion
or thermoregulation, although these values are easier to model than
mechanical work (Gleiss et al., 2011). Yet its great practical
advantage is that it can be easily measured in the field by attaching
miniaturized electronic devices to wild, free-ranging animals.

Under natural conditions, the environment shapes the energy
expenditure of foraging animals (Shepard et al., 2013). For example,
walking on sand requires more energy than walking on a hard
substrate in humans (Lejeune et al., 1998). And Rey and colleagues
(Rey et al., 2010) found that, at sea, Magellanic penguins
(Spheniscus magellanicus) take advantage of tidal currents to reduce
commuting costs. For flying birds, wind speed and direction
influence flight energy expenditure. For instance, the migration
routes of Cory’s shearwaters (Calonectris diomedea) are spatially
determined by wind patterns (Felicísimo et al., 2008). Shearwaters
follow a longer route in distance than a beeline, but it is probably
less costly because of better wind conditions. Northern fulmars
(Fulmarus glacialis) have higher field metabolic rates at low wind
speeds, probably because of higher wing-beat frequency (Furness
and Bryant, 1996). Finally, Weimerskirch et al. (Weimerskirch et al.,
2000) found that the heart rate of wandering albatrosses (Diomedea
exulans) was lower in birds exposed to tail winds. Recent studies
have modelled energy landscapes, predicting the fine-scale energetic
costs of moving in a given environment (Shepard et al., 2013;
Wilson et al., 2012).

Considering the great ecological importance of flight energetics, the
paucity of studies evaluating the energetic consequences of sinuous
flight in foraging animals, and recent electronic developments
allowing the monitoring of dynamic body acceleration in free-ranging,
wild animals, we tested whether flight path tortuosity, as well as wind
conditions, predicts flight energy expenditure.

Our study was conducted in foraging northern gannets [Morus
bassanus (Linnaeus 1758)] during the breeding season. Northern
gannets are the largest (180 cm wingspan) seabird species in the
North Atlantic. They perform plunge-dives to catch fast-swimming
pelagic fish such as mackerel (Scombrus scomber) and they gain
height before plunging at high speeds. They usually remain within
10 m of the water surface, but can reach >20 m by actively
swimming down through wing and leg movements (Garthe et al.,
2000). They are flap-gliders, their flight being composed of small
periods of flapping flight separated by glides. We therefore expected

their energy expenditure to be correlated with the proportion of
flapping versus gliding flight. Three typical behavioural states are
observed during foraging trips: (1) a travelling state, when birds
commute between the colony and prey patches or between prey
patches; (2) a foraging state, when birds actively search for prey in
a patch; and (3) a resting state, when birds sit on the water surface.
Tortuosity is expected to be higher during foraging than during
travelling or resting, because birds increase turning rate and reduce
their speed as a response to prey detection or increased feeding rate
(Fauchald and Tveraa, 2003). When prey have an aggregated spatial
distribution, this predatory searching behaviour, termed area-
restricted search, tends to concentrate the search activity of the
predators in areas of relatively higher prey density (Kareiva and
Odell, 1987). Conversely, outside feeding patches, commuting paths
are expected to follow a straight line, for birds to minimise flight
costs in poorer environments. Between the colony and the feeding
areas, assuming that wind direction is constant during a trip, we
expect that birds encounter wind from different angles (head, cross
or tail wind) depending on outward or return phases. This may lead
to different costs between outward and return journeys. We defined
windscape as the wind dimension (wind force and direction) of a
seascape, which integrates all physical parameters describing the
marine environment in which our study species live.

We used GPS and acceleration data loggers attached to foraging
northern gannets to test: (1) whether gannet energy expenditure is
higher during foraging relative to travelling states because of higher
tortuosity, taking windscape into account, (2) whether there is a
difference in gannet energy expenditure between outward and return
flights due to changes in wind direction, and (3) whether gannet
energy expenditure is correlated to the number of wing beats per
minute.

RESULTS
Analyses were conducted using GPS, accelerometer, dive and wind
data collected from 19 breeding adults in June 2011 and 16 breeding
adults in June 2012 during the chick-rearing period. We used the
vectorial overall dynamic body acceleration (ODBAV) calculated
from accelerometry data as an index of energy expenditure per
minute (see Materials and methods for calculation details). Bird
trajectories and average wind conditions are represented in Fig. 1.
Median wind speeds in the study area were slightly lower in 2012
than in 2011 (Fig. 1), whereas the main wind direction was
comparable in both years (southwesterly winds).

Behavioural state assignment using state–space models
We inspected speed (equivalent to step length) and turn angle
distributions for each individual to check whether state assignment
was correct (Fig. 2A,B). This verification ensured that turn angle
variance was higher for track sections identified as foraging compared
with travelling (Fig. 2B). There was also a speed difference between
the three states (Fig. 2A), with higher speeds during travelling than
foraging, and during foraging relative to resting. One individual that
performed a quick half-day trip was analysed with two states only as
it never stopped to rest. We also checked state assignment on GPS
tracks (Fig. 2C) to ensure that there were no inconsistencies between
track shape and assigned behavioural states. Fig. 2C shows a typical
foraging trip, composed of travelling segments, foraging periods and
a long night-time resting period. Note that dives, inferred from depth
recorder data (Fig. 2C), occurred mainly during foraging but also
occasionally while travelling.

During their overall trips, northern gannets spent on average
50.2±14.8% of their time resting, 30.7±10.5% travelling and

List of symbols and abbreviations
AIC Akaike’s information criterion
Ax, Ay, Az acceleration on the x-, y- and z-axes
c coefficient of variation
d distance to the colony
dmax maximum distance to the colony reached during the foraging

trip
Dx, Dy, Dz dynamic acceleration on the x-, y- and z-axes
ODBA overall dynamic body acceleration
ODBAV mean vectorial ODBA per minute
SSM state–space model
Sx, Sy, Sz static acceleration on the x-, y- and z-axes
t time elapsed
tmax total duration of the foraging trip
μ mean
ρ precision
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19.0±10.9% foraging, respectively. Fig. 3 shows the distribution of
ODBAV for each behavioural state. Despite our efforts to avoid
inconsistencies in state assignment between foraging and resting
(see Materials and methods), a limited number of resting periods
were assigned to foraging (see the small peak on the left of the
ODBAV distribution in foraging, Fig. 3B). To avoid biasing the
analyses, we therefore excluded foraging ODBAV values smaller
than the 85% quartile of the resting ODBAV distribution (solid red
line, Fig. 3A,B, corresponding to 13.6% of the foraging values),
because it is highly probable that these values actually corresponded
to resting behaviour.

Effect of behavioural state and wind on ODBAV
We first tested for differences in ODBAV between foraging and
travelling states using a linear mixed-effect model with individuals
as a random factor and a temporal autocorrelation structure. Wind
speed and bird–wind angles were added as covariates because they
were expected to influence ODBAV. We also added sex and year
because these variables possibly influenced energy expenditure.

Four models had a cumulative Akaike’s information criterion
(AIC) weight >0.90 (supplementary material Table S1A). All four
models included an interaction between state, wind speed and
bird–wind angle (supplementary material Table S1A). Model 1.1,
with the smallest AIC, only included these three explanatory
variables (supplementary material Table S1; AIC weight=0.43). The
three other models additionally included sex and/or year as
explanatory variables (supplementary material Table S1A; AIC
weights between 0.11 and 0.27). As the increased complexity of the

fixed effect structure did not lead to an increase in goodness of fit
(rc=0.41 for all four top models), we chose to retain the simplest
model (Model 1.1).

Prediction surfaces of Model 1.1 are represented in Fig. 4. 
They reveal that ODBAV was greater when birds were foraging,
compared with travelling (state travelling effect: estimate ±
s.e.m.=–0.045±0.014; Figs 3, 4). There was a negative effect of
bird–wind angle and wind speed, ODBAV being lower with tail
winds than with head winds and when wind speed increased. These
wind effects were more pronounced during travelling than during
foraging (Fig. 4).

As ODBAV was influenced by bird–wind angle, we investigated
whether the proportion of bird–wind angles encountered during
foraging and travelling differed. Frequency distributions of bird–wind
angles in both states showed that birds spent more time with head
winds while foraging (Fig. 5A). Frequency distributions of bird–wind
angles were more homogenously spread during travelling, although
there were fewer observations for tail winds (Fig. 5B).

Effect of trip phase on ODBAV when travelling
Bird–wind angles differed greatly between outward, middle and
return trip phases (Fig. 1, Fig. 5C,D). Indeed, birds spent more time
flying with tail winds during the outward phase (Fig. 5C) and with
head winds while returning to the colony (Fig. 5D). Bird–wind angle
distribution was homogeneous during the middle phase of trips, with
slightly more observations with head winds. We therefore decided
to investigate whether there were some differences in energetic costs
between these phases of the trips. We tested this hypothesis using a
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Fig. 1. GPS tracks overlaid on median wind speed
and direction over the study period. Study periods
were (A) 14–25 June 2011 (19 individuals) and (B) 12–23
June 2012 (16 individuals). Wind data are represented on
a 0.25×0.25° grid (daily ASCAT surface wind speed,
Cersat, Ifremer). White arrows represent wind direction
and their length is proportional to wind speed. 
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linear mixed-effect model with ODBAV as a function of trip phase,
year and sex (Model 2; supplementary material Table S2). Wind data
were not added to the model; its effect was included in the trip phase
effect. We used travelling phase data only to focus on the costs of
commuting.

Four models had a cumulative AIC weight >0.90 (supplementary
material Table S2A). All of them included trip phase. Model 2.1
with the lowest AIC (weight of the model: 0.43) only had trip phase
as an explanatory variable. The three other models also had sex
and/or year as explanatory variables (supplementary material
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Table S2A; AIC weights of the models between 0.25 and 0.11). The
four models had a goodness of fit equal to 0.38. Again, the
complexity of the model did not increase the goodness of fit so we
retained the simplest model (Model 2.1).

According to Model 2.1 (supplementary material Table S2B),
ODBAV was higher during the return phase compared with the middle
phase (middle phase effect: estimate ± s.e.m.=–0.023±0.006), and was
higher during middle and return phases compared with the outward
phase (outward phase effect: estimate ± s.e.m.=–0.043±0.007).

Effects of wing beats per minute on ODBAV
We tested the effect of the number of wing beats per minute on
ODBAV. There was a strong, positive correlation between ODBAV

and the number of wing beats per minute (Fig. 6; linear regression:
n=68, R2=0.76, P<0.001), which was not affected by sex. As
northern gannets are flap-gliders, an increase in the number of beats
per minute is not necessarily an increase in wing-beat frequency, but
could also correspond to a shortening of gliding periods towards
longer flapping periods. Bird turn angle had no effect on the number
of wing beats per minute.

DISCUSSION
Using GPS, three-axis acceleration and dive data collected on northern
gannets, we validate our hypothesis that energy expenditure per minute

is higher during sinuous foraging flights than during more rectilinear
travelling. Our results are in accordance with optimal foraging theory
predicting that sinuous movements are more costly than straight ones,
because of additional mechanical costs (Pennycuick, 1978). Flight
parameters (direction, speed) are more constant during travelling
compared with during foraging. Crucially, we showed that such
variability in flight parameters while foraging is associated with higher
energetic costs (Fig. 4). As a consequence, commuting paths are
expected to be straight in homogeneous environments outside feeding
patches, to minimize energy expenditure and time investment.

To our knowledge, this is the first time that the cost of tortuosity
has been measured in free-living animals other than humans (Minetti
et al., 2011; Wilson et al., 2013). In birds, a series of field studies
(some cited below) estimated ‘true’ flight costs, mainly using the
doubly labelled water method, but at the scale of days. In great
contrast our investigations estimated energy expenditure at a 1-min
scale. We also confirm that windscape parameters (wind speed and
direction) are important factors conditioning energy expenditure in
foraging and travelling birds. Fig. 7 summarizes energetic costs of
flight during a typical foraging trip.

Methodological limitations
Despite the great quality of the data used, our study has a series of
caveats, which are addressed below.
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One potential limitation of our study was the temporal resolution
of the GPS devices (1 min) compared with the duration of turns
(seconds, or less). At this 1-min scale, the OBDA method allowed us
to estimate average flight costs, but not to allocate these costs to
specific movements. As estimated energy expenditure per minute is
tightly linked to the number of wing beats per minute (Fig. 6), it is
more than likely that turning is associated with more frequent wing
flapping, but such wing flapping may occur before and/or after turns,
the turning itself being performed in gliding flight. Direct observations
of flying gannets should be performed to remove this ambiguity.
Further, using a 1-min sampling interval does smooth the real flight
path of the animal (Wilson et al., 2013). As a consequence, our
bird–wind angle measurement was probably less accurate during
foraging (when tortuosity is high) than during travelling, when flight
bearing is more constant. Indeed, greater measurement error in
covariates can bias downward, that is underestimate, the relationship
between ODBAV and bird–wind angle. This may partly explain why
the effect of bird–wind angle on energy expenditure was less
pronounced during foraging (Fig. 4A). Conversely, using a higher
sampling rate (such as one point per second) can lead to abnormal
tortuosity because of inaccuracies in GPS positioning (≈10 m),
something that can be problematic for behavioural state assignment.
This was the main reason why a 1-min sampling interval was chosen.

Regarding windscapes, data obtained by remote sensing only give
an approximation of actual wind speed and direction encountered by
birds in flight, because of the spatial and temporal resolution
inherent to satellite imagery. Indeed, the wind values that we used
are daily averages over 0.25×0.25° (27.5×27.5 km) grid cells at 10 m
height. Windscape most likely varies within one grid cell and within
the 24 h period. Moreover, wind force varies also with height, and
we did not take that into account as we did not know precisely at
which height our birds flew (GPSs only provide very inaccurate
altitude). Despite this lack of precision, windscape characteristics
were highly significant in our models, highlighting their importance
for energy expenditure levels.

Concerning differences in ODBAV between outward and return
flights, we could not take into account the fact that birds were
heavier on their way back because of food load. Firstly, it was not

possible to evaluate mass gain due to food load for birds returning
to the colony because they often fed their chick before recapture.
Secondly, this mass gain cannot be easily modelled because gannets
spend long periods sitting on the sea surface along their trip, during
which they partly digest their prey (Ropert-Coudert et al., 2004).
Therefore, mass gain through food load is likely to occur to varying
degrees during different phases of the trip, yet predominantly during
return flight. This extra load does increase energy expenditure per
minute (Wilson et al., 2006) and may also bias the effect of wind
direction on ODBAV, as unloaded birds flew preferentially with tail
winds and loaded birds with head winds (Fig. 5C,D).

Further, we have to keep in mind that foraging and travelling
behavioural states were inferred not only from turn angle but also
from speed criteria. Speeds were much lower during foraging than
travelling (Fig. 2A). Such lower speed during foraging is partly due
to the time spent diving and resting at the water surface just after the
dives. We did not test whether speed during actual flight periods was
significantly slower during foraging compared with travelling, as
flying at lower speeds may be advantageous when detecting fish
before diving. If it is the case, this must induce additional energetic
costs at low speeds and contribute to the difference in energy
expenditure per minute observed between foraging and travelling,
as studies on mechanical costs of flight in birds have measured that
power costs of flight follow a U-shape function as velocity increases
(reviewed in Tobalske, 2007).

Finally, we intentionally removed dives and take-offs from our
data and analyses so as to focus exclusively on flight periods. Yet
take-offs are known to result in increased energetic costs, especially
at low wind speeds. For instance, in wandering albatrosses
(Diomedea exulans), which are gliders, take-offs and landings are
energetically the most costly periods at sea (Shaffer et al., 2001;
Weimerskirch et al., 2000). As dives are more numerous during
foraging than during travelling, the costs of take-offs are expected
to enhance the difference in energy expenditure between these two
states. There may also be a cost associated with gaining height
before performing a plunge dive.

Wind-speed effect on energy expenditure depends on flight
style
Relationships between daily energy expenditure measured using the
doubly labelled water method and wind speed vary greatly between
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Fig. 7. Schematic representation of the energetic costs of flight per
minute for different portions of a northern gannet foraging trip. Energy
expenditure per minute is highest during foraging phases within food
patches. During travelling phases, energy expenditure per minute is higher
for return trips that occur more often against the wind than for outward
phases performed with the wind. Energy expenditure per minute of
commuting phases between food patches is intermediate.
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species (Furness and Bryant, 1996). The main reason appears to be
flight style, related to wing morphology (Spear and Ainley, 1997).
Pure flappers such as black-legged kittiwakes (Rissa tridactyla) and
little auks (Alle alle) spend more energy in flight when wind speed
increases (Gabrielsen et al., 1987; Gabrielsen et al., 1991). As a
consequence, the growth rate of little auk chicks decreased when their
parents were exposed to higher wind speeds at sea (Konarzewski and
Taylor, 1989). On the contrary, in northern fulmars (Fulmarus
glacialis), which are flap-gliders, energy expenditure decreased as
wind speed increased (Furness and Bryant, 1996). In this case, wing-
beat frequency tends to increase when wind is slack. Similarly, global
warming causing higher average wind speeds in the Southern Ocean
has been shown to favour foraging efficiency and enhance breeding
success in wandering albatrosses (Weimerskirch et al., 2012).
Surprisingly, Cape gannets (Morus capensis), which are closely
related to northern gannets, showed higher daily energy expenditures
at higher wind speeds (Mullers et al., 2009). Such measurements seem
contrary to our findings. However, because they were performed at
the scale of days instead of minutes, they are not directly comparable:
it is for instance possible that Cape gannet foraging success was lower
at high wind speeds, because of rippling of the sea surface, reducing
prey visibility (Finney et al., 1999). This could force Cape gannets to
perform more dives, thereby increasing overall daily energy
expenditure, even if their flight costs per unit time were lower than at
lower wind speeds.

Head winds increase flight costs
We observed a decrease in energy expenditure per minute when
bird–wind angles increased (i.e. when they flew with the wind),
particularly during travelling phases. These results corroborate
findings by Weimerskirch et al. (Weimerskirch et al., 2000) on
gliding wandering albatrosses in the Southern Ocean. Conversely,
flight costs increased when birds faced the wind, something that is
likely to result from higher flapping flight proportion to the
detriment of gliding flight (Fig. 6) (Sakamoto et al., 2013).
Theoretically, there is no reason for birds to spend more energy per
minute with head winds than with tail winds; the only difference
will be their speed. As a consequence, the global cost of transport is
expected to increase with head winds as more time will be needed
to cover the same distance. It is possible that northern gannets
compensate for the slowing down effect of head winds by flying
faster, and thus increasing their energy expenditure per minute, so
as to come back in time to the colony to feed their chicks. Not only
energy but also time spent away from the nest is a currency that
chick-rearing seabirds need to optimize (Stephens and Krebs, 1986).

It is surprising that northern gannets spent a high proportion of
time with head winds while foraging, as it is more costly (Fig. 5A).
This may be a consequence of the numerous take-offs following
dives, which typically occur against the wind. Another possibility is
that birds flew against the wind while foraging to reduce speed,
which can be advantageous to detect prey visually (Machovsky-
Capuska et al., 2012). Lastly, northern gannets may also use
olfaction to search for prey. In this case, an upwind approach is
necessary to fly against smell dispersion, as in the wandering
albatross (Nevitt et al., 2008).

We found that gannets tended to fly with the wind during outward
journeys, and to fly back to the colony against the wind (Fig. 5C,D).
The same results were found during previous studies of central-place
foraging seabirds. For instance, common guillemots (Uria aalge) from
the Baltic Sea (Evans et al., 2013) and sooty shearwaters (Puffinus
griseus) off New Zealand (Raymond et al., 2010) also left the colony
with tail winds and came back with head winds. Flying against the

wind on the way back to the breeding colony is particularly costly
because birds are then carrying additional food loads for their
offspring. This extra load was found to significantly increase energy
expenditure during return trip phases in great cormorants
(Phalacrocorax carbo) (Wilson et al., 2006). For northern gannets,
our observations are therefore not in accordance with optimal foraging
theory, which predicts that the forager should optimise wind use to
minimise energy expenditure during return trips.

One possible explanation is that birds cannot predict wind
conditions along their foraging trip. If they have no a priori
knowledge about future wind fields when they leave the colony, it is
more advantageous for them to leave with favourable wind conditions.
If wind conditions are changing quickly, they have a chance to take
advantage of tail winds during both outward and inward routes. In
more predictable environments, birds take full advantage of
favourable conditions. For example, condors follow windward slopes
to use air ascendance and thus reduce their flight costs and optimize
their route depending on wind direction (Shepard et al., 2013). We
also propose that gannets from the English Channel do not comply
with theory because their flying directions are strongly constrained by
coastlines and because they do not breed on an oceanic island. This is
the case for wandering albatrosses, which take advantage of winds in
the extreme. As their insular breeding site is very small and isolated,
their flight ranges are not constrained by any coastline. Further, they
travel in very large loops (>1000 km) to take advantage of wind
directions that vary regionally in the Indian and Southern Oceans,
avoiding head winds more or less completely (Weimerskirch et al.,
2000). Consequently, the travels of wandering albatrosses in the
Southern Ocean are far less repeatable than those of northern gannets
in the English Channel, which have been shown to anticipate the
location of the targeted feeding site soon after leaving their breeding
colony (Pettex et al., 2010) and to use the same feeding grounds
repeatedly (Patrick et al., 2013). Just as the coastline and prevailing
southwesterly winds (Fig. 1), localized, stable prey patches probably
also strongly constrain gannet flying directions, and therefore their
flight directions relative to the wind.

In conclusion, our study shows higher flight costs in northern
gannets while foraging compared with travelling. Yet we also clearly
identify windscape as a component strongly shaping the flight costs
of northern gannets. Travelling at low wind speeds can therefore be
more costly than foraging at high wind speeds. This clearly
illustrates how wind speed and direction shape the seascape of
marine predators, just as landscape affects the movement costs of
terrestrial animals (Wall et al., 2006).

MATERIALS AND METHODS
Fieldwork
Field protocols were validated with respect to ethics in animal
experimentation by the French Direction des Services Vétérinaires (permit
no. 34-369). Northern gannets were equipped with data-loggers on Rouzic
Island, Sept Iles Archipelago, Brittany (48°54′0″N, 3°26′11″W; ~20,000
breeding pairs), in 2011 (22 individuals) and in 2012 (27 individuals) during
the chick-rearing period. Breeding adults were caught at the nest when both
parents were present, using a telescopic pole fitted with a metal crook. Each
bird was equipped with a GPS logger (CatTraQTM, Catnip Technologies,
Hong Kong, China; 47×30×13 mm, 20 g) and a three-axis accelerometer
(G6A, CEFAS Technology Limited, Lowestoft, UK; 40×28×15 mm, 18 g),
which also recorded hydrostatic pressure as an index of dive depth. GPS
loggers recorded location every 30 s while accelerometers recorded
temperature and depth every second, as well as acceleration in three axes at
20 Hz. These two devices together weighed less than 1.3% of the bird’s body
mass. They were attached with white Tesa® tape (Hamburg, Germany) on
the lower back of the bird for the GPS and under the central tail feathers for
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the accelerometer. Handling lasted less than 10 min. In 2011, all birds but
one were recaptured. In 2012, three birds were not recaptured and one lost
its GPS unit. For nine accelerometers, data were unusable because of a
malfunction of the pressure sensor. In total, analyses were conducted on data
from 19 birds in 2011 and 16 in 2012. Most of the birds were equipped for
a single trip at sea (mean duration 22.6±10.7 h), while three were recaptured
after two trips. In this case, the second trip was not included in the analyses
to avoid pseudoreplication. Previous investigations showed very high
repeatability in foraging behaviour across successive trips, justifying the
assumption that the first trip is representative of individual foraging
behaviour (Patrick et al., 2013). Northern gannets are monomorphic, and the
sex of the equipped birds was determined from blood samples collected
upon recapture and recovery of all electronic devices.

GPS data analyses: behavioural state assignment
As the time interval between two GPS locations was not strictly constant in
our dataset, tracks were re-interpolated at a constant time interval of 1 min.
For each GPS position, we calculated step length (m) and turn angle (deg),
which is the angle between two successive path steps. The turn angle is
equal to 0 if the path is straight and equal to π  if the bird makes a U-turn
(Calenge et al., 2009).

Discrete behavioural modes were inferred from step length and turn angle
data using a state–space model (SSM) adapted from the triple switch model
(Morales et al., 2004). This method allows estimation of a sequence of states
in animal tracking data when behaviour itself is not directly observable.
Three different states were defined: resting (small step length, small turn
angle variance), travelling (large step length, small turn angle variance) and
foraging (medium step length, high turn angle variance). SSM output
provides the probability to be in a given state at each GPS position.

Step length distribution was modelled using a Gamma likelihood function,
with mean μ and coefficient of variation c: 

Thus, we could implement the following identification constraint:
μresting<μforaging<μtravelling. We used an exponential prior for both the mean and
the coefficient of variation. The prior for the coefficient of variation was
informative, favouring values smaller than 1 to ensure a unimodal distribution.
The likelihood for turning angles was a wrapped Cauchy distribution (Morales
et al., 2004): wC(mean=θ, precision=ρ). We used the following constraint on
turning angle precision parameters: ρresting>ρforaging<ρtravelling, to ensure that
foraging was associated with a larger variance. The models were fitted using
Markov chain Monte Carlo methods implemented in JAGS (Plummer, 2003)
called from R version 2.15.2 (R Development Core Team, 2013) using the
library Rjags. We ran six chains with overdispersed starting values for a burn-
in of 40,000 iterations. We then ran 10,000 further iterations, storing one
iteration out of 10 for posterior inference (i.e. the final sample size is 1000
iterations per chain). Convergence was assessed visually and with
Gelman–Brooks–Rubin statistics (Cowles and Carlin, 1996). Inference was
made from at least three converging chains. We also checked pseudo-residuals
as defined in Patterson et al. (Patterson et al., 2009).

Trip phase calculation
Each foraging trip was divided into three phases: outward, middle and
return. To define transitions, we followed Wakefield et al. (Wakefield et al.,
2009): for each GPS position, we calculated the distance to the colony
divided by the maximum distance to the colony reached during the foraging
trip (d/dmax) and the time elapsed divided by the total duration of the
foraging trip (t/tmax). Then we plotted d/dmax against t/tmax. We visually
determined the limits of the outward and return phases, which are
characterized by two breakpoints. These breakpoints delimit a phase with a
high commuting rate (either outward or return phase) where d/dmax varies
rapidly, and a middle phase where d/dmax stabilizes.

ODBA calculation
Acceleration data, in g, were analyzed with the software Igor Pro version
6.31 (Wavemetrics, Portland, OR, USA). ODBA is a measure of body
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motion derived from measurements of acceleration along all three spatial
axes (Wilson et al., 2006). This measure of the mechanical work performed
by individuals can be used as a proxy for energy expenditure under certain
conditions (Halsey et al., 2011). ODBA was calculated as described in
Wilson et al. (Wilson et al., 2006) and Shepard et al. (Shepard et al., 2008).
Acceleration (A) is the sum of static acceleration (S) resulting from body
angle with respect to gravity and dynamic acceleration (D) resulting from
body movements, i.e. A=S+D. First, for each axis, we calculated S, which
has a running mean of 2 s, using the box smooth function with 39 points in
Igor Pro. To choose an appropriate duration for the smoothing, the time
interval of 2 s for the running mean was determined by a calibration made
during 1-min periods of constant flapping flight, following Shepard et al.
(Shepard et al., 2008).

Two formulae are commonly used to calculate ODBA:

We chose to use OBDAvectorial and not OBDAsum for the statistical
analyses because OBDAvectorial is less sensitive to small changes in logger
position on the birds (Gleiss et al., 2011). Finally, we calculated mean
OBDAvectorial per minute to match with GPS data, and we shortened this term
to ‘ODBAV’ for the rest of the article.

When comparing acceleration data with the output of the SSMs, we
detected a recurrent inconsistency in state assignment: some periods of
obvious resting (according to the position of the bird and minimal ODBAV

values) were classified as foraging when turn angles varied (such as during
tidal reversion). To correct for this, we used the static acceleration of the
x-axis (Sx), corresponding to the antero-posterior axis of the bird, for
which values were different when the bird was flying or sitting on water,
showing a bimodal distribution. Periods of foraging during which Sx

corresponded to a bird sitting on water were therefore forced into the
resting state.

Diving data analyses
Diving data were processed using the program divesum [Grant Ballard,
unpublished software; see Lescroël et al. (Lescroël et al., 2010) for more
details]. This program corrected the baseline record and computed several
individual dive parameters such as start time, maximum dive depth, dive and
post-dive interval durations. Only dives ≥0.5 m deep and ≥1 s long were
considered. Minutes during which a dive occurred and minutes following a
minute with a dive (which included the short resting period following a dive
and the take-off phase) were excluded from the analyses of ODBA so that
the number of dives would not influence the comparison of mechanical work
during flight between behavioural states. From a random sample of 50 dives
across all individuals, the mean dive cycle duration, calculated from the
beginning of the rise in the air before the dive to the end of the take-off, was
22.6±10.3 s.

Windscape data
Daily windscape data were downloaded from the CERSAT portal
(cersat.ifremer.fr, Ifremer, Plouzané, France). These data correspond to
measurements from Metop/ASCAT satellite scatterometers and represent an
estimate of the wind vector at 10 m height with a resolution of 0.25° in
longitude and latitude. For each GPS position, wind speed and eastward and
northward wind components were extracted from the corresponding grid
cell. We then calculated the angle between bird direction and wind origin
(bird–wind angle) at each time step along the trajectories.

Wing-beat count
To test the hypothesis that a higher energy expenditure results from more
wing beats per minute, we counted the number of wing beats visible on the
dorso-ventral axis of the accelerometer in 68 randomly chosen minutes (two
per individual) of flight (minutes of foraging and travelling excluding dives).
A linear regression was performed to quantify the relationship between
ODBAV and wing beats per minute.

= + +A S A S A SODBA ( – ) ( – ) ( – ) , (2)vectorial x x 2 y y 2 z z 2

= + +A S A S A SODBA – – – . (3)sum x x y y z z
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Molecular sexing
Blood (0.2 to 0.8 ml) was drawn from the tarsal vein and immediately
centrifuged. Plasma and red cells were kept frozen separately in alcohol.
DNA was extracted from the red cells with a DNeasy Blood and Tissue Kit
(Qiagen, Valencia, CA, USA). A PCR was performed with the primers
2550F and 27181R (Fridolfsson and Ellegren, 1999). DNA fragments were
separated with electrophoresis on a 3% agarose gel with GelRed for
visualization. Males have one band (ZZ) while females have two (WZ).

Statistical analyses
All the statistical analyses were performed using R version 2.15.2 (R
Development Core Team, 2013) and followed methods described in Zuur et
al. (Zuur et al., 2009). To model ODBAV as a function of state or tortuosity,
wind speed, year and sex, we used linear mixed-effects models implemented
within the nlme package (Pinheiro et al., 2013). As our dataset had repeated
measurements for each individual corresponding to successive GPS
locations along its trip at sea, we added bird identity as a random effect. To
take into account serial autocorrelation due to repeated measurements in
time, we used a first-order autocorrelation structure for the time, with the
individual as a grouping factor.

First, starting with the most complete fixed-effects structure, we selected
the best random effect structure by comparing models with different random
effect structures (individual random effect and/or autocorrelation) using
restricted maximum likelihood estimation. Then, we selected the best fixed-
effect structure with the maximum likelihood method, starting with the most
complete structure and testing all combinations of factors. Models were
selected using AIC weights (Symonds and Moussalli, 2011) equal to:

AIC weight is a value between 0 and 1 analogous to the probability that
a given model is the best approximating model. We selected models with
the highest AIC weights until the cumulative weight exceeded 0.90. Among
these models, the best one was selected depending on the complexity of the
fixed-effects structure (number of parameters K) and the goodness of fit for
linear mixed-effects models [rc, see Vonesh et al. (Vonesh et al., 1996) for
the formula]. The goodness of fit is interpretable as a concordance
correlation coefficient between observed and predicted values. We
graphically checked the selected models for homogeneity, independence and
normality of the residuals (Zuur et al., 2009).
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Table S1: Model selection using linear mixed-effect models and Akaike information criterion to 

test for the effects of state, wind speed, bird-wind angle (BWA), year and sex on ODBAV. Not all 

models are represented. Table S1A present the selection of models with a cumulative sum of AIC 

weights>0.9 and the null model (intercept). Table S1B is the estimates of each best model with the 

lowest AIC. K is the number of parameters. ΔAIC is the difference of AIC between a given model and 

the model with the lowest AIC. AIC weight is the probability that a given model is the best 

approximating model.  

S1A Model 1 selection (34 birds, 16696 locations)     
N° Model K AIC ΔAIC AIC weight 
1.1 State*WindSpeed*BWA 9 -31597.64 0 0.40 
1.2 Year+State*WindSpeed*BWA 10 -31596.7 0.94 0.25 
1.3 Sex+State*WindSpeed*BWA 10 -31595.98 1.66 0.17 
1.4 Year+Sex+State*WindSpeed*BWA 11 -31594.98 2.66 0.11 
1.0 Intercept 2 -31082.76 514.88 0.00 

      S1B Model 1.1 parameter estimation       
   Parameter   Estimate SE 

 1.1 Intercept 
 

0.653 0.018 
 1.1 StateTravelling 

 
-0.045 0.014 

 1.1 WindSpeed 
 

-0.0027 0.0020 
 1.1 WindSpeed:StateTravelling 

 
0.0022 0.0019 

 1.1 BWA 
 

-0.000011 0.000083 
 1.1 BWA:StateTravelling 

 
-0.00016 0.00012 

 1.1 WindSpeed:BWA 
 

-0.000016 0.000011 
 1.1 WindSpeed:BWA:StateTravelling   -0.000026 0.000017 
  



Table S2: Model selection using linear mixed-effect models and Akaike information criterion to 1	  

test for the effects of trip phase, year and sex on ODBAV during travelling. Not all models are 2	  

represented. Table S2A present the selection of models with a cumulative sum of AIC weights >0.9 3	  

and the null model (intercept). Table S2B is the estimates of each best model with the lowest AIC. K 4	  

is the number of parameters. ΔAIC is the difference of AIC between a given model and the model 5	  

with the lowest AIC. AIC weight is the probability that a given model is the best approximating 6	  

model.  7	  

S2A Model 2 selection (32 birds, 11244 locations)   

N° Model K AIC ΔAIC 
AIC 

weight 
2.1 TripPhase 3 -24502.54 0 0.43 
2.2 Year+TripPhase 4 -24501.47 1.07 0.25 
2.3 Sex+TripPhase 4 -24501.06 1.48 0.21 
2.4 Year+Sex+TripPhase 5 -24499.85 2.69 0.11 
2.0 Intercept 2 -24470.42 32.12 0.00 

      S2B Model 2.1 parameter estimation   
   Parameter    Estimate SE 

 2.1 Intercept 
 

0.591 0.012 
 2.1 Middle Phase 

 
-0.023 0.006 

 2.1 Outward Phase   -0.043 0.007 
  8	  
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