
Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 4303-4312 doi:10.1242/jeb.106385

4303

ABSTRACT
Bite-force performance is an ecologically important measure of
whole-organism performance that shapes dietary breadth and
feeding strategies and, in some taxa, determines reproductive
success. It also is a metric that is crucial to testing and evaluating
biomechanical models. We reviewed nearly 100 published studies of
a range of taxa that incorporate direct in vivo measurements of bite
force. Problematically, methods of data collection and processing vary
considerably among studies. In particular, there is little consensus on
the appropriate substrate to use on the biting surface of force
transducers. In addition, the bite out-lever, defined as the distance
from the fulcrum (i.e. jaw joint) to the position along the jawline at
which the jaws engage the transducer, is rarely taken into account.
We examined the effect of bite substrate and bite out-lever on bite-
force estimates in a diverse sample of lizards. Results indicate that
both variables have a significant impact on the accuracy of
measurements. Maximum bite force is significantly greater using
leather as the biting substrate compared with a metal substrate. Less-
forceful bites on metal are likely due to inhibitory feedback from
mechanoreceptors that prevent damage to the feeding apparatus.
Standardization of bite out-lever affected which trial produced
maximum performance for a given individual. Indeed, maximum bite
force is usually underestimated without standardization because it is
expected to be greatest at the minimum out-lever (i.e. back of the
jaws), which in studies is rarely targeted with success. We assert that
future studies should use a pliable substrate, such as leather, and
use appropriate standardization for bite out-lever.

KEY WORDS: Bite force, In vivo performance, Lever mechanics,
Lizards, Jaws, Teeth, Mechanoreceptors

INTRODUCTION
A fundamental goal of measuring animal performance is to obtain
maximum voluntary performance so that comparisons among
individuals and/or taxa are meaningful (Losos et al., 2002). Bite
force has become an increasingly common measure of performance
and, in terms of published works, is second only to measures of
performance related to locomotion. If recorded reliably, the
quantification of bite force has potential for testing hypotheses in
behavioral ecology and evolutionary biology. Bite-force
performance can facilitate or limit dietary breadth, as well as
influence feeding strategy, such as dictating the amount of time
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required to immobilize and reduce food items (e.g. Herrel et al.,
1999; Verwaijen et al., 2002; Erickson et al., 2003). It also has been
demonstrated that, for animals that use their jaws as the primary
weapon during fighting, dominance in staged interactions largely
can be determined by bite-force performance relative to opponents
(Lailvaux et al., 2004; Husak et al., 2006). Furthermore, it can be a
powerful predictor of reproductive success in natural populations,
even more so than body size (Lappin and Husak, 2005; Husak et al.,
2009). Variation in bite force is often associated with differences in
head shape and thus can provide insight into morphological
evolution (e.g. Lappin et al., 2006b). Bite force also provides a
means of comparing performance in wild and captive animals that
show visible differences in phenotype (e.g. Erickson et al., 2004).
Finally, bite force is becoming increasingly important for
‘validating’ computer-based biomechanical models that are used to
predict strain distribution, assess skull strength and evaluate form
and function (e.g. Curtis et al., 2010a; Gröning et al., 2013).

Bite force has been measured from conscious non-human animals
in almost 100 published studies focusing on a range of taxa
including cartilaginous and bony fishes, crocodilians, finches,
hyenas, bats and rodents (Dessem and Druzinsky, 1992; Binder and
Van Valkenburgh, 2000; Dumont and Herrel, 2003; Erickson et al.,
2004; van der Meij and Bout, 2004; Huber et al., 2005; Santana and
Dumont, 2009; Becerra et al., 2011; Erickson et al., 2012; Grubich
et al., 2012; Erickson et al., 2014). Many studies have focused on
ontogenetic scaling (Erickson et al., 2003), sexual dimorphism
(Herrel et al., 1999; Lappin et al., 2006b), display and signaling
(Lappin et al., 2006a), reproductive output and fitness (Lappin and
Husak, 2005; Husak et al., 2009), skull biomechanics and model
testing (Curtis et al., 2010a; Becerra et al., 2013) and feeding
behavior and diet (Binder and Van Valkenburgh, 2000; Measey et
al., 2011) within a single species. In several studies multiple species
have been compared, including some analyses of over 15 species
(Herrel et al., 2002; Aguirre et al., 2002; van der Meij and Bout,
2004; Santana and Dumont, 2009; Vanhooydonck et al., 2010;
Santana et al., 2010; Freeman and Lemen, 2010). The majority of
research has been conducted on lepidosaurs (lizards and tuatara)
(Herrel et al., 1999; Lappin and Husak, 2005; Anderson et al., 2008;
Jones and Lappin, 2009; D’Amore et al., 2011; Cameron et al.,
2013), in part because of their diversity of feeding and reproductive
biology, as well as their experimental tractability.

In vivo bite-force performance data usually are collected using
calibrated equipment that includes two parallel bite plates that are
placed into the specimen’s mouth. Typically, three or five defensive
bites are recorded for each animal, with a rest period of a minute or
more between bites (e.g. Herrel et al., 1999; Lappin et al., 2006b).
Defensive bites are almost always measured, rather than bites
associated with feeding, because defensive bites are more easily
elicited. Importantly, defensive bites are more likely to represent
maximum voluntary performance, assuming that the threat of being
killed by a predator will provoke a maximum voluntary effort. Despite

Reliable quantification of bite-force performance requires use of
appropriate biting substrate and standardization of bite out-lever
A. Kristopher Lappin1,* and Marc E. H. Jones2,3,4
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the great number of published studies, critical aspects of the methods
used to collect the data are not consistent and are rarely discussed in
sufficient detail to enable reproducibility or application to other studies.

Here, we systematically survey the methods used in previous bite
force studies and, using a diverse sample of lizards, experimentally
test two crucial aspects of data collection. First, we focus on the type
of substrate used as the biting surface on force transducers. We
hypothesized that harder, less naturalistic substrates would hinder
the realization of maximum voluntary bite-force performance and
that this effect would be consistent among individuals and species.
Our rationale was that extremely hard substrates (e.g. metal) would
be likely to cause discomfort and possibly physical damage, for
example to the teeth, and that this would result in reduced
motivation to bite with maximum effort. Second, we examine the
effect of failing to account for variation in bite out-lever (i.e.
distance from fulcrum/jaw joint to position along jawline at which
jaws engage transducer) among trials and specimens when
measuring bite force. Based on lever mechanics (i.e. law of the
lever), we hypothesized that failure to record bite out-lever and
incorporate it into analyses of bite force typically results in
underestimation of true maximum voluntary bite force, as well as an
overall reduction in measurement accuracy.

RESULTS
Review of published studies
Ninety-nine studies of voluntary bite force in conscious non-human
vertebrates have been published in peer-reviewed journals since the
first study appeared over 20 years ago (supplementary material
Table S1). Over the past 10 years there has been a steady addition
of 5 to 10 studies a year (Fig. 1A,C,E). In total there have been 55

studies on lepidosaurs, 24 on mammals and 20 on other taxa
(Fig. 1A), such as turtles and birds (Fig. 1B). Many of the studies
involving mammals are on bats (n=10, Fig. 1B).

Biting substrate
There is no consensus as to what kind of substrate should be used
to cover the biting surface of force transducers or even if any
covering should be used at all (Fig. 1C,D). A number of studies
explicitly state that specimens bit directly onto metal bite plates
during trials (N=13). Problematically, almost half do not indicate
that any covering was used (N=48). Some do cite publications in
which the biting substrate was metal and, in general, no mention
of biting substrate might suggest that no covering was used over
the metal bite plates. However, this assumption is not reliable; for
example, in Marshall et al. (Marshall et al., 2012) biting substrate
is not explicitly described, but in a picture of a bite-force trial it
appears that a non-metallic covering was used [see Fig. 1 in
Marshall et al. (Marshall et al., 2012)]. Many studies clearly report
covering the bite plates with a non-metallic material (N=38).
However, the type of covering used is variable and has included
leather (N=21) (e.g. Erickson et al., 2004; Lappin and Husak,
2005), medical tape (N=7) (e.g. Dumont and Herrel, 2003), flesh-
like tape (N=1) (Cameron et al., 2013), rubber (N=4) (e.g. Binder
and Van Valkenburgh, 2000), plastic (Noble et al., 2014) and even
some type of food (N=2) (e.g. La Croix et al., 2011; Fig. 1C,D). In
three publications on mammals, based on specimen size, substrates
consisted of combinations of metal, hard plastic and leather (e.g.
Freeman and Lemen, 2008). In one case (Henningsen and Irschick,
2012), the authors state that the specimens bit on the padded ends
of steel bite plates but do not indicate what material comprised the
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Fig. 1. Quantitative representation of
studies of bite force directly
measured from conscious non-
human vertebrate specimens.
(A) Cumulative studies (n=99) over time
divided by broad taxonomic group.
(B) Studies separated by more specific
lineages. (C) Studies over time divided
by most commonly used substrate
types. (D) Variation in all substrate types
across all studies (large pie graph) and
for studies involving lepidosaurs (small
pie graph, n=55). (E) Studies over time
divided by method categories of
accounting for bite out-lever.
(F) Percentages of studies using bite
out-lever method categories explained
in main text.
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pads. Specified reasons for using a covering include protection of
the animal’s teeth (N=25), to provide a non-skid surface (N=8), to
record the location of biting (N=11), to encourage biting (N=5), to
provide a natural texture (N=1) and to protect the equipment
(N=4).

We found that the substrate used on the transducer bite plates has
a major effect on performance. The two-way ANOVA model
showed significant effects on bite force of substrate (F=10.97,
d.f.=2, P=0.0002) and genus (F=9.09, d.f.=7, P=0.0001). The
interaction between substrate and genus was not significant (F=1.94,
d.f.=14, P=0.0577). Pairwise comparisons (Tukey HSD) of the
effect of substrate on bite force indicated that bite force is
significantly greater using either leather or wood than it is with
metal (leather versus metal, P=0.0002; wood versus metal,
P=0.0115). Notably, bite-force performance was greater on leather
than on metal by an average of nearly one and a half times (bite
force on leather as per cent of bite force on metal: mean ±
s.d.=143.4±47.8%, maximum=291.3%, minimum=83.3%, N=25).
This is consistent with our observations that most lizards showed a
strong tendency to bite more vigorously on leather than on metal. In
addition, when lizards bit on metal, damage to the teeth was often
clearly audible.

When only Crotaphytus collaris and Eublepharis macularius
were included in the ANOVA model, the effect of substrate on bite
force was significant (F=15.66, d.f.=2, P<0.0001), but there was no
effect of genus (F=1.05, d.f.=1, P=0.3266). In contrast to the model
including all genera, the substrate by genus interaction was
significant (F=12.48, d.f.=2, P=0.0002). Pairwise comparisons
(Tukey HSD) of the effect of substrate on bite force indicated that
bite force is significantly greater with leather than with either wood
(P=0.0034) or metal (P<0.0001), but bite force did not differ when
using wood or metal. The significant substrate by genus interaction
reflects a distinctive difference between C. collaris and E.
macularius in the effect of substrate on bite force, with the effect
being far greater in C. collaris (Fig. 2). For C. collaris, bite force on
leather was greater than on metal by an average of nearly two times
(bite force on leather as the percentage of bite force on metal:
190.3±50.7%, max=291.3%, min=133.7%, N=6). For E. macularius,
however, bite force on leather and metal were similar (bite force on
leather as percentage of bite force on metal: 106.1±18.7%,

max=139.4%, min=83.3%, N=6). When separate ANOVA models
were run for C. collaris and E. macularius with substrate and
individual as the independent variables, the substrate effect was
significant for C. collaris (F=22.37, d.f.=2, P<0.0001; Tukey HSD,
leather versus wood: P=0.0235; wood versus metal: P=0.0096;
leather versus metal: P<0.0001) but not for E. macularius (F=2.61,
d.f.=2, P=0.1222; Fig. 2).

Bite out-lever
We define the bite out-lever as the distance from the jaw joint to the
position along the jawline that engages the biting surface of the
transducer. About half of the studies (N=47) do not describe whether
or how bite out-lever is taken into account. Studies that do so
typically take one of two approaches. Many report that the location
in the jaws at which the bite is applied was somehow consistent
(n=46), either by researcher control (n=30), by specimen choice
(n=6) or by ‘stops’ on the transducer that prevent posterior bites
(n=10) (Fig. 1E,F). A minority describe recording which part of the
jaws are applied to the transducer with respect to the location of the
jaw joint during each trial so that bite out-lever can be calculated
post hoc (n=6) (Fig. 1E,F).

Researcher control involves constraining the bite out-lever by
carefully positioning the bite plates in a specific part of the
specimen’s mouth (e.g. using particular teeth as landmarks) such
that the bite point is homologous among trials and specimens (e.g.
Erickson et al., 2003; Dumont and Herrel, 2003). In contrast,
specimen choice involves the specimens biting with a consistent part
of the jaws by their own choice (Binder and Van Valkenburgh, 2000;
van der Meij and Bout, 2004; van der Meij and Bout, 2006).
Standardization using ‘stops’ placed near the bite plates that limit
how far the jaws can reach over the plates during a trial also has also
been attempted (e.g. Herrel et al., 1999; Marshall et al., 2012). This
results in bites consistently being measured at anterior bite points
(Fig. 3A–D; Fig. 4).

Our experimental results show that of all sets of bite-force trials
in the present study (i.e. 360 sets where one set equals three trials in
sequence on one individual), we found that in 25.5% of sets the trial
that produced the maximum raw bite force (i.e. no bite out-lever
correction) did not match the trial that produced the greatest actual
bite force (i.e. with bite out-lever correction). This mismatch may
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Fig. 2. Effect of biting substrate on bite-force performance. Comparison of bite force (standardized for a bite out-lever of 75%) using leather (brown), wood
(yellow) and metal (grey) biting substrates for Crotaphytus collaris (n=6) and Eublepharis macularius (n=6). Mean ± s.d. indicated by filled circle and vertical
lines. Median is horizontal line spanning inside of box, and lower and upper bounds of box represent lower and upper quartiles, respectively. For each animal,
the mean and median bite force is calculated from six sets, where each set is represented by the highest of three trials (see Fig. 6 in Materials and methods).
C. collaris shows a strong tendency to bite hardest on leather. For five specimens (not Cc01), the mean and median is greater for leather than wood, and
greater for wood than metal. Similarly, for these specimens the standard deviations of bite force on leather and metal do not overlap. By contrast, E. macularius
exhibits considerable variation among individuals in which substrate elicits the greatest bite force. For four specimens (Eum02, Eum03, Eum05, Eum06), the
mean and median bite force was greatest on leather, but for two individuals (Eum01 and Eum04), it was greatest on metal. The standard deviations of bite
force on leather and metal overlap for five of the six specimens (not Eu05).
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be more likely in taxa that have a relatively long tooth row because
the range of potential bite forces is predicted to be greater in such
taxa than in taxa that have a relatively short tooth row (Table 1). For
the species with the longest tooth row relative to head length (Anolis
equestris), bite force at the most posterior teeth is predicted to be
260% of that at the jaw tips. In contrast, for the species with the
relatively shortest tooth row (Eumeces schneideri), bite force at the
most posterior teeth is predicted to be 181% of that at the jaw tips.

DISCUSSION
Biting substrate
Our results indicate that bite-force performance is greater on more
pliable substrates, in line with our observations that most lizards
showed a strong tendency to bite more vigorously on leather than on
metal. This is consistent with studies on human subjects that test the
effect of biting substrate hardness on voluntary bite force
(Paphangkorakit and Osborn, 1998). This constraint on bite force
probably arises via inhibitory feedback from mechanoreceptors that
serve to limit risk of damage to the jaws and teeth during loading
(Paphangkorakit and Osborn, 1998; Serra and Manns, 2013).
Correspondingly, humans can bite more forcefully under local
anesthesia (Orchardson and MacFarlane, 1980). In humans and other
mammals, such mechanoreceptors that are sensitive to local
mechanical stimuli (e.g. encoding information on the hardness and
stiffness of an item being bitten) are found in the periodontal ligament
that surrounds the tooth root and suspends it in the socket (Hannam,
1969; Yamaguchi et al., 2012; McCormack et al., 2014). Lizards do
not possess a periodontal ligament, but similar mechanoreceptors are
almost certainly present in the dentine (Dong et al., 1985; Dong et al.,
1993; Kieser et al., 2009; Kieser et al., 2011) and less certainly in the
pulp cavity (Paphangkorakit and Osborn, 1997; Paphangkorakit and
Osborn, 1998), jaw joints (Curtis et al., 2010b), skull sutures (Jones
et al., 2011), bones (Jacobs and van Steenberghe, 1993) and soft
tissues of the mouth, such as the tongue (Paphangkorakit and Osborn,
1998).

Leather is clearly superior to metal as a biting substrate for
obtaining maximum voluntary bite-force performance. As previously
stated (e.g. Lappin and Husak, 2005; Anderson et al., 2008; Becerra
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Fig. 3. Use of stops on transducer plates accounts for neither effects of
variation in head size nor potential variation in bite position due to
willingness to bite. (A,B) Specimen A has a head that is twice as long as
specimen B. When stops are used to constrain how far over the bite plates
the jaw tips can go, the bite out-lever is artifactually decreased for the smaller
specimen, which results in an overestimate of its true bite-force performance
relative to the larger specimen. (C,D) Specimen D is biting the bite plates
before its jaw tips contacted the stops, as is likely to be common with
aggressive, visually oriented species. This increases the bite out-lever,
resulting in an underestimate of the actual bite-force performance of
specimen D relative to specimen C. If the stops are placed even farther back
on the bite plates, measurement error due to variation in head size or shape,
as well as failure to contact the stops, is increased. Stops placed such that
bites are restricted to the jaw tips (as in the figure) guarantees that all
measurements will underestimate maximum voluntary bite force, which will
be attained more posteriorly on the jawline. (E) Most studies do not use stops
and even fewer use pads of biting substrate. As such, numerous teeth along
the jawline contact the bite plates, thus making it problematic to estimate bite
out-lever or ensure that trials are comparable.

Table 1. Taxonomic variation in potential range of maximum bite-
force performance due to variation in the length of the tooth row
relative to head length

Species mean Range among 
Species N ± s.d. (%) individuals (%)

Crotaphytus collaris 6 218±3.2 212–221
Eublepharis macularius 6 195±4.7 190–202
Elgaria multicarninata 3 193±3.1 190–196
Gambelia wislizenii 2 219±1.4 218–220
Gekko gecko 2 209±1.4 208–210
Gekko badenii 1 237 –
Anolis equestris 1 260 –
Anolis garmini 1 228 –
Crotaphytus bicinctores 1 240 –
Eumeces schneideri 1 181 –
Uromastyx maliensis 1 224 –
Species means combined 219±23.1 181–260

Bite force range is expressed as a percentage of predicted bite force at the
most posterior teeth relative to predicted bite force at the jaw tips. Using lever
mechanics, calculated as: range of potential bite force (%)=100*head
length/(head length–tooth row length). Lizards with relatively long tooth rows
exhibit a greater range of potential bite forces, indicating that failing to
account for bite out-lever may produce even more error in quantifying bite
force for such species.
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et al., 2013), leather has the advantage of providing a substrate that
teeth can grip. In addition, it is not surprising that its use greatly
reduces the risk of damage to the teeth and jaws, given that the
average Young’s modulus (stiffness) of 307 stainless steel at 185 GPa
(n=12) is over 40 times greater than that of leather (N=12) and 27
times greater than that of balsa wood (N=12) (Table 2). Furthermore,
the Young’s modulus of stainless steel is at least six times greater than
that of bone, which ranges from 3 to 29 GPa (Zysset et al., 1999) and
is often modelled as 17 GPa (e.g. Kupczik et al., 2009); thus when a
lizard’s teeth contact bone during a bite, the potential for dental trauma
is expected to be much lower than if the teeth forcefully engage
stainless steel. The maximum stiffness we measured for leather was
greater than the minimum we found for balsa wood, but the standard
deviations of the two sample means do not overlap. The greater
performance elicited by using leather may reflect the benefits of using
a naturalistic material. A substrate that is similar to what an animal
may encounter in nature, such as the integument of an attacking
predator, is likely to elicit greater biting effort than a substrate, which
is, on average, an order of magnitude more stiff than bone.

The highly significant effect of biting substrate on bite force in C.
collaris but not in E. macularius may be a result of differences in
dentition and the expression of corresponding behavioral
characteristics to protect the teeth. Indeed, when lizards bit on metal,
albeit at a lower force than on leather for most species, damage to
the teeth was often clearly audible. The teeth of crotaphytids are
large, few in number, and complex compared with those of
eublepharine geckos (Hollenshead and Mead, 2006; Nikitina and
Ananjeva, 2009), and tooth replacement rate is lower in the former
given the relative frequencies of worn tooth tips, replacement teeth
and resorption pits (Fig. 5). The energetic cost of producing
relatively large teeth combined with the potential negative effects of
tooth damage on behaviors such as prey capture and processing,
male–male combat and defense against predators may be more
substantial in C. collaris. As such, behavioral tendencies that protect
teeth from damage during biting may be manifest to a greater degree
in C. collaris than in E. macularius. Interestingly, variation in
motivation to bite has been reported among highly similar
congeners; for example, compare the descriptions for Uromastyx
lizards in Porro et al. (Porro et al., 2014) with Herrel et al. (Herrel
et al., 2014). Importantly, if biting substrate is not explicitly reported
it is not possible to exclude substrate differences as a contributing
factor to motivational variation. Finally, the difference in substrate
effect we observed between C. collaris and E. macularius indicates
that a general correction factor cannot be applied to compare data
collected using different biting substrates.

Bite out-lever
The bite out-lever should be measured in parallel to the
anteroposterior axis of the head to avoid the potentially confounding
effects of angular measurements. We use the center of the pads
adhered to the outer surface of each bite plate, as viewed laterally
during a trial, to determine the point along the jawline that engages

the biting surface of the transducer. Without the pads, regardless of
substrate type, it is not possible to accurately identify the bite point,
because teeth at various positions along the jawline would contact
the bite plates (Fig. 3E). The pads also help to ensure that the point
at which the jaws engage the transducer corresponds to the point
where the device was calibrated. The most common type of bite-
force transducer, a double-cantilever beam, is calibrated by hanging
weights from a filament placed at a precise point on the active bite
plate (see Anderson et al., 2008). When the point(s) of jaw
engagement does not correspond to that used for calibration
measurement, significant error is introduced.

Constraining bite out-lever via researcher control (e.g. Erickson et
al., 2003; Dumont and Herrel, 2003) can work for some taxa, for
example if behavioral tendencies permit repeated accurate placement
of the transducer. This approach has been applied successfully to
crocodilians (e.g. Erickson et al., 2003) and bats (e.g. Dumont and
Herrel, 2003). These taxa are suitable for this technique because the
heterodont dentition of most of these species facilitates the use of a
specific tooth as a landmark. Crocodilians also open the mouth as a
defensive response and, importantly, usually do not close their jaws
until the transducer is allowed to contact the tooth. In contrast, many
animals will aggressively bite a transducer in response to visual or
other sensory input, which can make it difficult or even impossible to
maintain precision among trials and subjects to account for variation
in bite out-lever. Notably, aggressive taxa that voluntarily and
vigorously exhibit defensive biting are also those that are the best
suited for bite-force experimentation in the first place.

Some subject animals consistently prefer to bite with a particular
part of their jaws. Taking advantage of such behavioral
characteristics (here termed specimen choice) will result in a
repeatable bite out-lever. However, even among highly similar taxa,
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Table 2. Material testing results for Young’s modulus
Leather Wood Metal

N 11 12 12
Mean (GPa) 4.6 6.8 185.3
Min 3.4 4.5 172.0
Max 5.6 9.9 195.7
Median 4.4 6.2 185.8
s.d. 0.6 1.6 6.4
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Fig. 4. Variation in bite out-lever during bite-force trials. Histogram shows
the distribution of bite out-lever for all raw trials for all individuals. Arrows on
histogram correspond to those on the inset lizard skull and indicate bite out-
levers at 50%, 75% and 100% of the distance from the jaw joint to the jaw
tips. A bite out-lever of 50% approximates the position of the most posterior
teeth where bite force is expected to be greatest, whereas that at 100%
represents the position of the most anterior teeth where bite force is expected
to be lowest. A bite out-lever of 75% estimates the midpoint of the tooth row.
There is a clear tendency for the raw bite point to be near the midpoint of the
tooth row (mean ± s.d.=77.8±10.4%). Very few trials fall near the posterior
teeth (50%) and therefore almost all non-standardized bite-force trials will
substantially underestimate maximum potential voluntary bite force. The use
of ‘stops’ that limit bites to the anterior teeth (see Fig. 6 in Materials and
methods) results in even greater underestimates. Morphological differences
among taxa, for example in the length of the tooth row relative to the length
of the entire head, can be addressed by standardizing bite force for any
position on the jawline. Yellow dot in inset indicates quadrate-articular jaw
joint (fulcrum).
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there can be behavioral differences in which part of the jaws are
used when biting. For example, van der Meij and Bout (van der
Meij and Bout, 2006) report that finches will bite a force transducer
with only their beak tip, whereas Herrel et al. (Herrel et al., 2005)
describe positioning the metal bite plates towards the posterior of
the beak during trials. Therefore, if the specimen choice method is
to be used, the focal taxon/taxa should be carefully assessed for
biting behavior that produces a reliably consistent bite out-lever.
Specimen choice appears to be an inappropriate method for
comparing lizards because of considerable variation in bite out-lever
during voluntary bites (Fig. 4).

Standardization also has also been attempted using ‘stops’
adhered to the bite plates that limit how far the jaws can reach over
the plates during a trial (e.g. Herrel et al., 1999; Marshall et al.,
2012) (Fig. 3A–D). This approach does reduce variation in bite
location by preventing bites being made with the middle or posterior
of the jawline. However, variation in bite position can also occur at
the front of the jaws, with its degree and effects influenced by
specimen head size and shape (Fig. 3). Moreover, given that
maximum bite force at the front of the jaws is only about half that
possible at the posterior part of the jaws (e.g. Gröning et al., 2013)
(Table 1), raw measurements from the front do not represent
maximum performance (Figs 4, 6). Studies recording bite force only
at various anterior bite points thus cannot be used to infer limitations
on diet for animals that use their middle or posterior dentition during
feeding. This problem is especially pronounced for species that have
a relatively long tooth row (Table 1).

We recommend that bite-force experiments are video recorded
from lateral view so that the bite out-lever can be measured for
each trial using digitizing software (e.g. ImageJ) (Jones and
Lappin, 2009). The fulcrum of the lever, the jaw joint, can be
identified in some taxa with external landmarks. For example, in
most lizards the position of the quadrate-articular joint is
externally landmarked by the ventral extent of the tympanum. If a
reliable external landmark is not available (e.g. many mammals
and birds), other approaches may be feasible, such as using careful
reference to skeletal material in combination with video recordings

to estimate jaw joint location. Recording each bite with video so
that bite out-lever can be measured takes time, but it represents the
most thorough approach. A video record facilitates post hoc
analyses, such as calculation of the bite force at any point along
the jawline (Fig. 6). This could be used, for example, in feeding
studies where knowledge of bite force at specific jaw positions can
be used to make meaningful inferences with respect to prey
processing behavior that involves characteristic oral positioning of
food items. Explicit data on bite out-lever broadens the potential
application of bite-force analysis to a variety of questions in
biomechanics and ecomorphology.

Further considerations
Variation in gape angle may also affect bite force because of
associated differences in muscle fiber orientation relative to the jaws
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Tooth gaps

A

B

Replacement teeth

Rounded / worn tooth tips

5 mm

5 mm

Fig. 5. Differences in tooth size, complexity and replacement rate.
Anterior part of the right mandible of (A) Crotaphytus collaris (SAMA R66679)
and (B) Eublepharis macularius (SAMA R60196) in lingual view. Compared
with E. macularius, the teeth of C. collaris are larger, fewer in number, more
complex and show evidence of a lower replacement rate.

A

B

Fig. 6. Standardization of bite out-lever. (A) A knight anole (Anolis
equestris) biting a custom-built force transducer showing the measurements
made to standardize bite out-lever. The jaws engage leather pads adhered to
the outer surface of the bite plates. Yellow dot indicates quadrate-articular
jaw joint (fulcrum). Red arrow and red solid line represent bite point on
jawline and raw bite out-lever, respectively. Blue solid line is standardized
bite out-lever (50%), in this case in the region of the posterior teeth. Note that
this species has an especially long snout; therefore standardization for an
even shorter bite out-lever could be used to standardize bite force at the
most posterior teeth. Blue arrow represents standardized bite force, which is
greater than the raw bite force because the standardized bite point is closer
to the fulcrum. (B) Bite-force trial in which raw bite force was applied with a
relatively short bite out-lever. Here standardized bite force is being calculated
for a bite out-lever of 75%. Standardized bite force can be calculated for any
position on the jawline as: standardized bite force=(raw bite force)(raw bite
out-lever)/(standardized bite out-lever).
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(Curtis et al., 2010c), streptostyly (Smith, 1980) and muscle
length–tension properties (Gidmark et al., 2013). Some studies
report controlling for gape by adjusting the distance between the two
biting surfaces (e.g. Dumont and Herrel, 2003; Herrel and Holanova,
2008; Herrel et al., 2009; Santana et al., 2010; Measey et al., 2011;
Vanhooydonck et al., 2011; Marshall et al., 2012; Becerra et al.,
2013; Chazeau et al., 2013). However, the details of executing this
approach successfully are not explained. It is sometimes unclear as
to whether the adjustment is carried out for every subject or only for
‘larger individuals’ of unspecified size (e.g. Herrel and Holanova,
2008; Vanhooydonck et al., 2011). Depending on the design of the
device, adjusting it between specimens also may require that it be
re-calibrated after each re-adjustment. Also, on the rare occasion that
a preferred gape angle is reported, differences are evident [e.g.
‘about 30 degrees’ (Santana and Dumont, 2009); ‘~10°’ (Becerra et
al., 2013); ‘10±5°’(Herrel et al., 2007)]. In any case, for such an
approach to be accurate, video recording of trials is essential. The
lack of control for gape angle in our study is not a significant issue
because our hypotheses and statistical analysis are such that the
comparisons are made within individuals, not among individuals or
species, as is the case in most studies.

In addition to peak bite-force performance, other aspects of in
vivo bite force are readily measureable and can be of potentially
valuable application. By using an A/D system to record real-time
bite force, characteristics that can quantified include, for example,
rate of force generation and decay, relative frequency and amplitude
of repeated bites, fatigability and capacity to maintain a degree of
biting force between repeated peak bites (e.g. D’Amore et al., 2011).
Performance characteristics such as these have the potential for
application to questions involving feeding biomechanics, combat
that employs the jaws as a weapon and other behaviors that hinge
on bite-force performance (e.g. excavation in some bats and
rodents).

Bite-force performance is one form of in vivo data that has been
used to evaluate predictions made by computer-based biomechanical
models (e.g. Curtis et al., 2010a; Gröning et al., 2013). Our results
demonstrate that variations in methods for quantifying bite force,
such as choice of biting substrate and whether bite out-lever is
incorporated, can lead to significantly different and perhaps
misleading in vivo results. Nevertheless, it seems widely assumed
that in vivo results represent inherently accurate empirical data, to
the extent that if model predictions match the in vivo data then the
model is considered to be ‘validated’ (e.g. Rayfield, 2007; Kupczik
et al., 2009; Curtis et al., 2010a; Gröning et al., 2013). In reality,
when biomechanical models and empirical data correspond, it may

be through chance alone (Niklas, 1992; Alexander, 2003). Moreover,
if predictions do not match in vivo data there are three possibilities
prima facie: the model is in error, the in vivo data are in error or both
are in error. Methods used to collect in vivo data require a
comparable degree of scrutiny to that applied to biomechanical
modeling.

MATERIALS AND METHODS
Literature survey
We surveyed the peer-reviewed literature for studies reporting empirical data
on in vivo voluntary bite-force performance in non-human vertebrates
(supplementary material Table S1). We excluded studies where animals were
anesthetized. Relevant peer-reviewed publications were identified using a
variety of search engines (e.g. Google Scholar, Web of Science, PubMed)
and search terms (e.g. bite, force, performance, jaws, teeth, transducer)
during several intensive literature search sessions between 2009 and 2014.
Reference lists of those publications already located were also examined for
previously unidentified publications. We included chapters in edited books
but not abstracts or unpublished theses. From this body of literature (97
references describing 99 taxon-focused studies) we compiled a table
recording three aspects of method: (1) taxa involved, (2) biting substrate (i.e.
material used to cover biting surface of transducer) and (3) approach used
to account for bite out-lever (i.e. distance from the jaw joint to the position
along the jawline that engages the biting surface of the transducer). When
details such as biting substrate were not explicitly stated they were scored
as ‘not indicated’. For an interactive, up-to-date compilation of information
on published studies of voluntary bite force in non-human vertebrates see:
http://biteforce.cloud.ersa.edu.au/.

Specimens
We used a phylogenetically diverse sample of lizards comprising 26
individuals representing 11 species in 9 genera and 7 families (Table 3). For
each specimen, we recorded body mass and snout-vent length as measures
of body size. In addition, given that the sample of specimens represents
diverse thermal physiology, we reviewed the literature for data on field-
active body temperature. This information was used to determine the body
temperature at which bite force was measured for each specimen (Table 3).

Equipment
As in the vast majority of previous studies of bite-force performance,
measurements were made using a custom-built double-cantilever beam force
transducer. The components include a piezoelectric isometric force
transducer (type 9203, Kistler, Switzerland) connected to a charge amplifier
(type 5995, Kistler, Switzerland). The transducer is custom fitted with two
stainless steel bite plates arranged around a pivot so that compression on the
bite plates produces tension on the transducer (see Herrel et al., 1999). The
dimensions of the terminal end of each bite plate are 25 mm wide×1.25 mm
thick (Lappin and Husak, 2005). For these experiments the distance between
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Table 3. Taxa, body size and testing temperature for lizards sampled
Species N SVL (mm) Mass (g) Testing temp. (°C)

Crotaphytus collaris Say 1823 6 94.2±1.7 38.7±8.1 36.5±1.4a

Eublepharis macularius Blyth 1854 6 131.5±11.0 65.0±16.3 26.3±1.1b

Elgaria multicarninata Blainville 1835 3 119.9±9.4 37.8±11.7 30.6±1.1c

Gambelia wislizenii Baird and Gerard 1852 2 105.3±1.6 37.1±6.9 37.4±0.7a

Gekko gecko Linnaeus 1758 2 151.1±15.8 105.4±56.6 27.6±1.1d

Gekko badenii Szczerbak and Nekrasova 1994 1 116.8 32.2 28.7±1.1e

Anolis equestris Merrem 1820 1 135.6 37.2 30.6±0.7f

Anolis garmini Stejneger 1899 1 114.6 33.7 31.0±1.2g

Crotaphytus bicinctores Smith and Tanner 1972 1 104.6 32.1 36.4±1.1a

Eumeces schneideri Daudin 1802 1 144.0 85.5 28.3±0.8h

Uromastyx maliensis Heyden 1827 1 166.0 214.5 38.7±1.2i

Values for snout–vent length (SVL), mass and testing temperature are mean±s.d. Statistics for testing temperature calculated from sum of all sets among
specimens for given species. For species that lack published data on field active body temperature, data from related species (i.e. congeners) were used.
aA.K.L., unpublished data; bAngilletta et al., 1999; cKingsbury, 1993; dSievert and Hutchison, 1988; esame temperature used as for G. gecko; fToro et al., 2003;
gLosos, 1990; hDu et al., 2000; iWilms et al., 2011.
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lower surface of upper bite plate and upper surface of lower bite plate was
1.5 mm. Thus, the distance between the two outer leather surfaces is
~5.5 mm.

Amplifier output was calibrated using a series of weights suspended by
fishing line on the bite plate that produces tension on the Kistler transducer
when the plates are squeezed together, as during a bite-force trial.
Specifically, the fishing line was suspended at the center of a leather strip
adhered to the outer surface of the bite plate (see Fig. 6). Once calibrated,
the bite plates of the device were not in any way moved or adjusted (e.g.
distance between bite plates changed) for the duration of the experiments.

To test for the effects of biting substrate on bite-force performance, pads
measuring 26×9×1 mm were constructed from three different materials
(leather, wood, metal). The width of the pads (i.e. 9 mm) was intentionally
greater than that we have used in previous publications on similarly-sized
lizards, such as Crotaphytus, in which pads measuring 3 mm wide were used
(e.g. Lappin and Husak, 2005; Husak et al., 2006; Lappin et al., 2006a). For
the present study, we chose a 9 mm width because we did not want to risk
injuring lizards by having them bite on narrow metal pads. Bites on narrow
metal pads would produce high pressures on small parts of the jawline,
which conceivably could result in injury as severe as a broken jaw. For each
treatment, a pad was adhered to the outer surface of the upper and lower bite
plates using double-sided tape. This proved sufficient to prevent any
movement of the pads during trials. The leather used was soft deertan-style
cowhide (ArtMinds Leather, Michaels Stores, Inc., USA). For the leather
treatment, the 1-mm-thick strip was adhered to the bite plate by its smooth
side, such that the unfinished side was presented to specimens during trials.
The wood used was standard 1-mm-thick balsa, and the metal was 1-mm-
thick 307 stainless steel. The Young’s modulus (stiffness) of the three
substrates was quantified using a Nanoindentation tester (NHT, CSM
Instruments) at the University of Hull.

Experimental design and data acquisition
Multiple measurements were obtained from each lizard for each biting
substrate. To minimize potential effects of experience, the order of substrate
was systematically varied. For C. collaris, E. macularius and E.
multicarinata, 54 measurements (Fig. 7) were obtained with 18 on each
biting substrate. These bites were divided into six rounds of three sets with
each set consisting of three trials on one substrate, with 60 s of rest between
trials. Each set was separated by at least 3 h. For the remaining taxa, 27 bites
were obtained from each specimen (i.e. three sets of three trials for nine bites
on each substrate; Fig. 7).

To prepare specimens for bite-force trials, terraria with heating lamps
were used to warm lizards to their field-active body temperature (Table 3).
A cloacal thermometer (Miller & Weber, NY, USA) was used to record body
temperature prior to each set of bites. The lizards were held with their heads

near the bite-plates and, if necessary, encouraged to gape by tapping on the
snout. Once a lizard’s mouth was open the bite plates were placed inside its
mouth whereupon the lizards would bite voluntarily (Fig. 6).

All trials were recorded from a lateral view with a Canon Vixia HFS10
camcorder. From the videos, the position of the strips (leather, wood, or
metal) along the jaw line was recorded in lateral view, and the parasagittal
distance from the center of the pads to the quadrate-articular joint (bite out-
lever) was measured using ImageJ v1.47 on a PC (Fig. 6). Standardized bite
force (i.e. standardized for bite out-lever) was then calculated for each trial
by applying the Law of the Lever (in-force×in-lever=out-force×out-lever),
where in-force is raw bite force, in-lever is the distance from the fulcrum
(quadrate-articular jaw joint) to the bite point on the jaw line during the bite-
force trial, out-lever is the distance from the fulcrum to the point on the jaw
line for which the researcher wants to standardize bite force for bite out-
lever, and out-force is bite force standardized for bite out-lever (Fig. 6). For
each individual, the greatest standardized bite-force among all trials
performed using a given substrate, assumed to represent maximum
voluntary bite-force performance for that substrate (see Losos et al., 2002),
was used in the statistical analysis.

Statistical analysis
Statistical analyses were performed using JMP version 11.0.0 for Windows
(SAS Institute). To account for size variation of the head among specimens,
residuals were calculated from a regression of log bite force (i.e. log of bite
force standardized for bite out-lever) on the log of the geometric mean of
the three head measurements (length, width, depth). Residuals were used as
independent variables in ANOVA models (below) and in all cases were
normally distributed.

To test the hypothesis that biting substrate has a significant effect on bite
force, we ran a two-way ANOVA with residual bite force as the dependent
variable. The independent variables were biting substrate, genus, and the
interaction between biting substrate and genus. Individual nested in genus
was included as a random effect. We then performed an equivalent ANOVA
but included only the two species represented by six individuals each
(Crotaphytus collaris and Eublepharis macularius), such that all
permutations of substrate order were conducted with them (Fig. 7).

To evaluate the effect of failing to standardize bite force for bite out-lever,
such as a tendency to underestimate maximum voluntary bite force, we
constructed a count histogram showing the cumulative distribution of raw
bite out-lever for all trials. This allows examination of how much raw bite
out-lever (i.e. actual levers during trials) is apt to differ from a standardized
bite out-lever. Comparing the raw bite out-lever distribution with a bite out-
lever standardized for 50% of the distance from the jaw joint to the jaw tips
illustrates the tendency to underestimate maximum voluntary bite force,
expected at or near the position of the most posterior teeth. In addition, we
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Subject Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

A M - W - L W - M - L L - W - M M - L - W W - L - M L - M - W

B L - M - W M - W - L W - M - L L - W - M M - L - W W - L - M

C W - L - M L - M - W M - W - L W - M - L L - W - M M - L - W

D M - L - W W - L - M L - M - W M - W - L W - M - L L - W - M

E L - W - M M - L - W W - L - M L - M - W M - W - L W - M - L

F W - M - L L - W - M M - L - W W - L - M L - M - W M - W - L

1 set of 3 trials on wood

1 set of 3 trials on metal

1 set of 3 trials on leather

54 trials divided among 3 substrates

Fig. 7. Experimental design. Each letter represents a set of three
trials on a specific substrate (L, leather; W, wood; M, metal). Each
group of three letters represents a round of three sets. Each of the
first six rows represents the order of substrate tests for an
individual Crotaphytus collaris or Eublepharis macularius (n=6).
Elgaria multicarinata specimens (n=3) each followed the order of
one of the first three rows. Data collection for taxa represented by
one or two individuals comprised three rather than six rounds and
followed the order L-W-M, W-M-L, M-L-W.
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estimated the potential range of bite-force performance for each species by
measuring the length of the tooth row from lateral view and expressing bite
force at the most posterior teeth as a percentage of bite force at the jaw tips
[i.e. bite force at posterior teeth=bite force at jaw tips×head length/(head
length–tooth row length)]. Lizards with long tooth rows, relative to head
length, are expected to exhibit a greater range of potential bite forces.
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