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ABSTRACT
The aerodynamics of flapping flight for the smallest insects such as
thrips is often characterized by a ‘clap and fling’ of the wings at the
end of the upstroke and the beginning of the downstroke. These
insects fly at Reynolds numbers (Re) of the order of 10 or less where
viscous effects are significant. Although this wing motion is known to
augment the lift generated during flight, the drag required to fling the
wings apart at this scale is an order of magnitude larger than the
corresponding force acting on a single wing. As the opposing forces
acting normal to each wing nearly cancel during the fling, these large
forces do not have a clear aerodynamic benefit. If flight efficiency is
defined as the ratio of lift to drag, the clap and fling motion
dramatically reduces efficiency relative to the case of wings that do
not aerodynamically interact. In this paper, the effect of a bristled wing
characteristic of many of these insects was investigated using
computational fluid dynamics. We performed 2D numerical
simulations using a porous version of the immersed boundary
method. Given the computational complexity involved in modeling
flow through exact descriptions of bristled wings, the wing was
modeled as a homogeneous porous layer as a first approximation.
High-speed video recordings of free-flying thrips in take-off flight were
captured in the laboratory, and an analysis of the wing kinematics
was performed. This information was used for the estimation of input
parameters for the simulations. Compared with a solid wing (without
bristles), the results of the study show that the porous nature of the
wings contributes largely to drag reduction across the Re range
explored. The aerodynamic efficiency, calculated as the ratio of lift to
drag coefficients, was larger for some porosities when compared with
solid wings.

KEY WORDS: Thrips, Aerodynamics, Flapping flight, Wing
kinematics, Locomotion, Weis Fogh mechanism, Bristled wing,
Fringed wing, Immersed boundary method

INTRODUCTION
Though hard to notice even when they hop, walk or fly, the smallest
flying insects reported in the literature (with body lengths less than
1 mm) are of considerable ecological and agricultural importance.
For example, over 5500 species of thrips have been described thus
far (Morse and Hoddle, 2006). They function in multiple important
roles such as: (1) effective transmitters of pollen during feeding
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(Terry, 2001; Terry, 2002), (2) invasive pests of agriculturally
important plants (Crespi et al., 1997; Palmer et al., 1990) and (3)
biological vectors of microbial plant pathogens such as Tospoviruses
(Ullman et al., 2002; Jones, 2005). Parasitoid wasps consist of a
dozen hymenopteran superfamilies that include some of the smallest
insects, such as Mymar sp. These insects have received much
attention in recent years because of their potential as a natural
control of agricultural pests (Austin and Dowton, 2000).
Understanding the aerodynamics of flapping flight in these tiny
insects provides a means of exploring their dispersal strategies and
ranges; it may also help us to elucidate the principles of active flight
in some of the smallest animals (Lewis, 1964; Lewis, 1965).

Although many researchers have investigated the complex nature
of the aerodynamics of flapping flight in insects ranging from the
scale of the hawk moth Manduca sexta (Usherwood and Ellington,
2002; Wang, 2005; Hedrick et al., 2009) to the fruit fly Drosophila
(Vogel, 1962; Dickinson and Götz, 1993; Dickinson et al., 1999),
the aerodynamics of flight in the smallest insects remains relatively
unexplored (Horridge, 1956; Weis-Fogh, 1973; Ellington, 1980;
Miller and Peskin, 2009). The Reynolds number (Re) is commonly
used to quantify the ratio of inertial to viscous effects in a fluid and
is given as Re=ρLU/μ where ρ is the density of air, μ is the dynamic
viscosity of air, L is the chord length of the wing and U is the wing
tip velocity. Drosophila and Manduca span the Re range from about
100 to 1000, while some of the smallest thrips and parasitoid wasps
fly at Re<10.

It appears that one of the predominant lift-augmenting
mechanisms for nearly all insects is flight at high angles of attack
(~45 deg). The resulting high lift is possibly due to the presence of
a stable leading edge vortex, which remains attached to the upper
surface of the wing until stroke reversal (Ellington et al., 1996; van
den Berg and Ellington, 1997a; van den Berg and Ellington, 1997b;
Liu et al., 1998; Usherwood and Ellington, 2002; Birch and
Dickinson, 2003; Birch et al., 2004). This vortex creates a negative
pressure region above the wing and enhances lift. Lift is also
generated when the trailing edge vortex (also known as the starting
vortex) is shed from the wing and consequently induces circulation
around the wing. ‘Wake capture’ could also enhance lift as the wing
moves back through its wake due in part to the fact that the velocity
of the fluid relative to the wing is increased (Wang, 2000).

Flight aerodynamics and wing kinematics for the smallest insects
differ from those of larger animals such as Drosophila species.
Horridge (Horridge, 1956) proposed that tiny insects employ an
asymmetric flight stroke via adjusting the angle of attack differentially
such that most of the lift is generated during the downstroke and
negative lift is minimized during the upstroke. Weis-Fogh (Weis-
Fogh, 1973) analyzed video recordings capturing the hovering flight
of the tiny parasitic wasp Encarsia formosa and discovered the use of
a ‘clap and fling’ mechanism. More specifically, the wings were
observed to clap together at the end of each upstroke and fling apart
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at the beginning of each downstroke (see Fig. 1). The fling motion is
produced by a rotation of the wings about the common trailing edge,
during which time a pair of large leading edge vortices are formed
(Maxworthy, 1979). Lighthill (Lighthill, 1973) analytically showed
that the clap and fling mechanism could be used for lift augmentation
even in 2D inviscid flows. The clap and fling mechanism has since
been observed in other insects such as Thrips physapus (Ellington,
1980; Ellington, 1984), the parasitoid wasps Muscidifurax raptor and
Nasonia vitripennis (Miller and Peskin, 2009), the greenhouse white-
fly Trialeurodes vaporariorum (Weis-Fogh, 1975) and some
butterflies (Srygley and Thomas, 2002). It is also commonly observed
in the tethered flight of larger insects such as Drosophila species
(Vogel, 1967).

In addition to measurements of tiny insects in free flight,
computational fluid dynamics has been used to explore the force
generation and resulting flow structures produced during the flight
of tiny insects. Here, we describe the dimensionless force
coefficients as follows:

where CL is the lift coefficient, CD is the drag coefficient, U is the
constant characteristic velocity, FL describes the lift or vertical
component of the force acting against gravity, FD describes the drag
or horizontal component of the force and S is the surface area of the
wing. Note that the characteristic velocity, U, does not change in
time so that the force coefficients are functions of time. Another way
to think about CL and CD is to consider them as dimensionless
forces. Numerical simulations of flapping wings have shown that lift
coefficients are reduced and drag coefficients are increased
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significantly when the Re is lowered from 100 to 20 or below
(Wang, 2000; Miller and Peskin, 2004; Wu and Mao, 2004).
Numerical simulations of clap and fling show that lift coefficients
can be enhanced by almost 100% for Re in the range of the smallest
insects (Mao and Xin, 2003; Miller and Peskin, 2005; Kolomenskiy
et al., 2010). The cost of clap and fling for small insects (Re≈10) is
that the drag required to fling the wings apart may be an order of
magnitude larger than the force required to move a single wing with
the same motion (Miller and Peskin, 2009). As the opposing drag
forces on each wing nearly cancel during the fling, these large forces
do not have a clear aerodynamic benefit.

The previous experimental and computational work has focused
on models of solid wings, but the wings of many small insects such
as thrips are fringed or bristled rather than continuous (Ellington,
1980) (see Fig. 2). The aerodynamic benefits of this type of wing are
not clear. Sunada et al. (Sunada et al., 2002) constructed a

A

B

Fig. 1. Diagram showing a two-dimensional simplified ‘clap and fling’.
Taken from Miller and Peskin (Miller and Peskin, 2005). Top: the three-
dimensional motion of the insect. Bottom: the corresponding two-dimensional
approximation. (A) At the beginning of the upstroke, the wings rotate together
about the leading edges to perform the clap. (B) At the beginning of the
downstroke, the wings rotate apart about the trailing edges to perform the
fling.

Fig. 2. Images showing some of the variation in the number and
spacing of bristles present in the wings of tiny insects. (A) The bristled
wing of an adult female parasitoid wasp Mymar sp. from New Zealand
(courtesy of S. E. Thorpe). (B) The bristled wings of an adult thrips collected
in Chapel Hill, NC, USA.
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dynamically scaled model of a thrips wing and measured lift and
drag generated during single wing translation and rotation. Their
results showed that lift and drag scaled proportionally with the
addition of bristles, and they did not find a clear aerodynamic
benefit. As the forces generated during the fling are up to an order
of magnitude greater than the single wing case, it is possible that
large differences in bristled wing aerodynamics may be seen when
the wing–wing interaction is considered. The amount of airflow
between the bristles is proportional to the normal force or pressure
difference across the wing, and this effect could potentially result in
significant airflow through the wings when forces are large.

In this study, a porous version of the immersed boundary was
used to investigate the aerodynamics of bristled wings during clap
and fling. Recordings of thrips in free take-off flight were filmed in
the laboratory using high-speed videography. Kinematic analyses
were performed, and the results were used to select input parameters
for the simulations. Given the computational difficulty of resolving
the flow through dozens of bristles in three dimensions, the wings
were approximated to be homogeneous porous layers in two
dimensions. Lift and drag coefficients were calculated as functions
of time during the flapping cycle. Parametric studies were performed
to compare the aerodynamics of solid wings and bristled wings with
several levels of porosity for Re≤10.

RESULTS
Kinematic observations
Snapshots taken during the clap and fling wingbeat of a typical
thrips in free take-off flight are shown in Fig. 3. The images were
recorded at 4000 frames s−1. Note the characteristic bristled wing
form. At the end of the upstroke (the clap), the wings are raised
normal to the body axis and come within about 1/6 to 1/10 chord
lengths of each other. This clap motion is characterized by a
simultaneous rotation of the wing about the base and the trailing
edge. At the beginning of the downstroke (the fling), the wings
rotate simultaneously about the trailing edge and the wing base,
which results in the fling motion. Videos of typical thrips in take-off
flight are shown in supplementary material Movies 1–3.

Four of the videos collected showed thrips that ceased to flap their
wings shortly after take-off. During this time, the insects spread their
wings and passively floated downward. This behavior is termed
‘parachuting’ herein rather than ‘gliding’, using the convention
given by Alexander (Alexander, 2003). Parachuting refers to the use

of drag-producing structures in order to reduce the speed of falling.
Gliding, in contrast, relies on lift production. To make an operational
distinction between the two, maneuvers using descent angles lower
than 45 deg are considered to be gliding maneuvers and above
45 deg are considered to be parachuting maneuvers. In all cases, the
descent angles for parachuting thrips were greater than 45 deg (e.g.
the thrips were not gliding). Snapshots taken during a typical
parachuting maneuver are shown in Fig. 4. In this case, the thrips
spreads its four wings above its body about 8 wingbeats after take-
off. The insect then passively parachutes downward until it is out of
the field of view of the camera. Supplementary material Movie 4
shows a video of this maneuver.

Wing tip speed as a function of time for two representative thrips
is shown in Fig. 5. The two forewings were tracked over three strokes
using DLTdv5 software (Hedrick, 2008) and velocities were measured
via direct numeric differentiation. Maximum wing tip velocities are
of the order of 1.5 m s−1. The average flapping frequency measured
for eight individuals (and a total of 45 wing strokes) was 254±32 Hz.
A paired two sample t-test shows that the duration of the average
upstroke (1.87±0.27 ms) was significantly shorter than that of the
average downstroke (2.13±0.47 ms; P=0.00254). The length of the
wings (base to tip) was 0.644±0.193 mm (N=6). If we assume an
aspect ratio of about 2 (see Fig. 2), this results in a Reynolds number
of about 14 based upon the average wing tip velocity and a total
sweep of 120 deg. Looking at the smallest (0.383 mm span) to largest
(1.03 mm span) individual gives a Re range of 4.9–35.

Mathematical modeling
The complex structure of the bristled wing prevalent in tiny insects
such as thrips is modeled herein as a porous layer using a previously
derived method (Kim and Peskin, 2006; Stockie, 2009).
Permeability is incorporated into the immersed boundary method
using an interpretation of Darcy’s law, which states that the relative
velocity of a fluid through a porous medium is proportional to the
pressure difference across the boundary:

where Q is the volumetric flow rate, κ is the permeability of the
layer (with units of m2), [p] is the pressure difference across the
layer, Tp is the thickness of the layer, Ap is the surface area of the
layer and μ is the viscosity of the fluid.

=
−κ ⎡⎣ ⎤⎦

μ
Q

A p

T
, (3)

p

p

Fig. 3. Successive snapshots
taken during clap and fling of a
thrips in free take-off flight. The
images were recorded at
4000 frames s−1. Note the
characteristic bristled wing form.
Top: at the end of the upstroke, the
wings are raised vertically with
respect to the body and come within
about 1/6 to 1/10 chord lengths of
each other. Bottom: at the beginning
of the downstroke, the wings rotate
about the trailing edge and the root
performing the fling motion.



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

3901

RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.084897

Equating the volumetric flow rate to the difference between the
local fluid velocity and the velocity of the boundary results in an
expression for the slip between the boundary and fluid. This is
incorporated into the immersed boundary method by modifying the
velocity of the boundary. Rather than moving the boundary at the
local fluid velocity, a slip is used that is proportional to the force per
unit area acting normal to the boundary (which is equivalent to the
pressure jump) and the porosity. The velocity of boundary motion is
modified as follows:

( )= + Λ ⋅q t q t q tX U F n n( , ) ( , ) ( , ) , (4)t

where X(q,t) gives the Cartesian coordinates of the boundary point
labeled by the Lagrangian parameter q at time t, U is the velocity of
the boundary at position q, F(q,t) is the force per unit length applied
by the boundary to the fluid as a function of the Lagrangian position
q and the time t, n is the unit vector normal to the boundary and Λ
is a proportionality constant termed the porosity (see Kim and
Peskin, 2006) and has units of m2 (N s)−1. The physical interpretation
of the porosity coefficient, Λ, is that it is equal to the number of
pores in an interval multiplied by the conductance of the material
per unit arc length. The relationship between the porosity, Λ, and the
permeability, κ, is given by Λ=κ/(Apμ).

Relating the porosity to the leakiness
Another metric that has been used to measure the permeability of a
structure is the leakiness, L (Cheer and Koehl, 1987). L is calculated
as the ratio of the actual flux through the structure over the flux in
the inviscid (μ=0) case: 

where U is the freestream velocity and Q is the volumetric flow rate.
Note that there is no flow through the porous structure when L=0,
and the flow is inviscid when L=1. The leakiness of thrips wings and
other bristled appendages can be estimated using the analytical
results of Cheer and Koehl (Cheer and Koehl, 1987). These results
have also been experimentally validated by Loudon et al. (Loudon
et al., 1994). Thrips have a cylinder diameter to gap ratio of 1:10
and 1:12 at a bristle-based Re of 1.0×10−2 (Ellington, 1980). This
leads to leakiness values ranging from about 0.15 to 0.24.

The porosity, Λ, used by Kim and Peskin can be directly related
to the leakiness, L, using an appropriate non-dimensionalization.
The leakiness is calculated at steady state for cylinders arranged
normal to the direction of flow. If one divides the porosity by the
steady-state force per unit area at a 90 deg angle of attack, F, over
the free stream velocity, U, the result is the percentage slip between
the boundary and the fluid:

where Le is the dimensionless porosity. When the boundary moves
normal to the direction flow at steady state, Le is equivalent the
leakiness defined by Cheer and Koehl (Cheer and Koehl, 1987).

=


L
Q

UA
, (5)

p

= ΛU
F

Le , (6)

Fig. 4. A passive ‘parachuting’
maneuver from a video recording
at 4000 frames s−1. Snapshots
were taken every 1.25 ms about
eight wingbeats after take-off. The
wings clapped together at the
beginning of the downstroke (i).
Rather than completing the stroke,
the thrips spreads its wings (ii–v)
and passively parachutes
downward until it leaves the field of
view (vi–viii).
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Fig. 5. Wing tip speed of the left and right wing tips as a function of
time. Data for two representative thrips are shown. Black, left wing; gray,
right wing. Maximum wing tip velocities are of the order of 1.5 m s−1. Flapping
frequencies are of the order of 250 Hz, and the upstroke was significantly
shorter than the downstroke.
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This relationship uses the fact that the pressure jump across the
porous boundary is equal to the normal force per area acting on the
boundary, as described in Kim and Peskin (Kim and Peskin, 2006).
The choice of characteristic force per unit area used in this study
was F=1/2CDρU2, where CD was set to 6 (the approximate drag
coefficient of a Re=10 wing at a 90 deg angle of attack). Leakiness
is then maximized when the wing moves with a 90 deg angle of
attack and would drop to zero at a 0 deg angle of attack (no flow in
the tangential direction). In the simulations that follow, the effective
leakiness varies in time as the normal force acting on the boundary
changes over time due to wing–wing interactions, acceleration and
changes in angle of attack. Throughout the remainder of the paper
we will refer to the dimensionless porosity, Le, as the leakiness.

Table 1 shows all parameter values used in the simulations. For
easy comparison with thrips and other insects, all simulation
parameters are dimensionless using the following relationships:

where u is any component of the velocity field and tildes are used
to denote the dimensionless parameter. Re was varied from 4 to 10
to span the range of tiny insects from the smallest parasitoid wasps
to thrips. Re was adjusted by keeping all length and velocity scales
constant and changing the dynamic viscosity appropriately. Le was
varied from 0 (solid wing) to 0.28.

Description of prescribed kinematics
The simplified flight kinematics of clap and fling used in this paper
are similar to those used in a number of experimental, analytical and
computational papers (Lighthill, 1973; Bennett, 1977; Spedding and
Maxworthy, 1986; Mao and Xin, 2003; Miller and Peskin, 2005).
The translational and angular velocities during each half stroke were
constructed using a series of equations to describe each part of the
stroke as described previously (Miller and Peskin, 2009). For the
case of clap, the wings translate towards each other at a constant rate
at a constant 45 deg angle of attack. Deceleration and wing rotation
then begin simultaneously at the end of the stroke. The wings rotate
about the leading edges from 45 to 90 deg. For the case of fling, the
wings rotate apart about the trailing edges from a 90 to a 45 deg
angle of attack. Translation begins halfway during wing rotation. At
the end of the translational acceleration phase, the wings continue
to translate apart at a constant speed and a constant 45 deg angle of

=u
u
U

, (9)

=
ρ

k
k
LU

, (10)targ
targ

2

=x
x
L

, (7)

=t t
L U/

, (8)

attack. Plots of translational and angular velocities as functions of
time are shown in Fig. 6.

Either a single clap upstroke or a single fling downstroke was
simulated. This simplification was made because the influence of
the wake produced by the previous stroke is small for Re<10. The
right wing was the mirror image of the left wing at all times during
its motion. At the end of the upstroke and the beginning of the
downstroke, the wings were placed 1/10 chord lengths apart unless
otherwise noted.

Validation of method and choice of kinematics
The use of the immersed boundary to study clap and fling with solid
wings has been previously validated through a convergence study
and comparison with published experimental results (Miller and
Peskin, 2005). A convergence study for a porous wing performing
a fling at Re and leakiness values relevant to thrips was also carried
out. Fig. 7 shows lift and drag coefficients as functions of time
(fraction of stroke) for a 630×630 and a 1230×1230 grid with a
leakiness value of Le=2.3×10–1. The initial peaks correspond to the
forces generated during the fling. Deviations in peak drag between
the finer and coarser grids are due to differences in the effective
width (and hence the gap) between the wings. A single immersed
boundary point interacts with the fluid like a sphere with radius
1.255 grid cells (Bringley and Peskin, 2008). As a result, the wings
have an effective width of about 2.51 grid cells, and the width of the
wings is refined as the grid is refined. For the 630×630 grid, the

Table 1. Parameter values used in the simulations
Dimensionless parameters Symbol Value

Chord length L 1
Domain length D 20
Reynolds number Re 4–10
Dimensionless porosity (leakiness) Le 0–0.28
Spatial step size dx 0.039
Time step size dt 2.4×10–5

Maximum translational velocity Umax 1
Maximum rotational velocity Ωmax 9.0
Target stiffness ktarg 144
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Fig. 6. Dimensionless translational and rotational velocities of the
computational wings as functions of dimensionless time. (A) Kinematics
for the clap with 100% overlap between translation and rotation at the end of
the stroke. (B) Kinematics for the fling with 50% overlap between the
beginning of rotation and the subsequent beginning of wing translation.
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effect gap size is 1.6% of the chord, and for the 1230×1230 grid, the
effective gap size is 5.8% of the chord. Once the wings are
sufficiently far apart, there is excellent agreement.

During flight, the distance between the wings at the beginning of
the fling varies from about 1/4 to 1/10 of the chord length. For
example, Fig. 3 shows a gap of about 1/10 of the chord length. To
determine the effect of the initial gap, the distances (measured from
the middle of each wing) were varied from 1/10 to 1/2 of the chord
length. The fact that the wings do not completely touch is fortuitous
with regard to the immersed boundary method as the level of mesh
refinement required scales inversely with the distance between the
wings, and strictly speaking the method does not allow one to resolve
the case of wings that are in direct contact. A method that can resolve
wing contact for the case of solid rigid wings performing clap and
fling has been described by Kolomenskiy et al. (Kolomenskiy et al.,
2010; Kolomenskiy et al., 2011), and their results show larger lift as
the distance between the wings approaches zero.

The choice of wing kinematics for the translation phase of the
simulations is idealized. We were not able to quantitatively analyze
angle of attack or stroke plane angle. Given the size of the thrips
(~1 mm) and the wingbeat frequency (200–250 Hz), lighting and the
plane of focus are significant challenges in terms of the amount of
quantitative data that can be obtained. Another challenge is that the
thrips are constantly changing their orientation and are susceptible
to even the smallest breeze in the room. Without a clear
measurement of flight direction and orientation, it is not possible to
calculate stroke plane angle and angle of attack. The translation
portion of the stroke was chosen so as to provide the maximum lift
at a 45 deg angle of attack. As this study is mainly focused on what
happens during the initial part of the fling, the kinematics of the
translational portion is not significant to the major findings.

Single wing studies
Single wing studies were performed by placing a porous wing in a
moving fluid. Parabolic flow with maximum velocity Umax was
driven within a computational channel and upstream of the model
wing by applying an external force, f′ext, to the fluid proportional to
the difference between the desired fluid velocity and the actual fluid
velocity, as described elsewhere (Miller et al., 2012). The difference
between the actual and desired velocities was controlled with a
‘stiffness’ parameter, kext=10ktarg (where ktarg is the target stiffness),

such that the difference between the two velocities was always less
than 0.1%.

Lift and drag coefficients as functions of time for fixed porous
wings at a 45 deg angle of attack at Re=10 are shown in Fig. 8. The
wing was fixed in place, and the background flow was ramped from
zero to the characteristic velocity at t′=0.2. Maximum lift
coefficients of 1.7 were achieved when the porosity was set to zero,
which is equivalent to a solid wing. Lift did not significantly drop
for leakiness values up to 10−1. Maximum drag coefficients of about
3.4 were also found when the porosity was set to zero and also did
not drop considerably.

Clap and fling
Drag coefficients as a function of time (fraction of stroke) for Re=10
are shown in Fig. 9 for a single clap and a single fling. Note that
Le=0 corresponds to a solid wing. Four leakiness values ranging
from 2.8×10−4 (least leaky) to 2.3×10−1 (most leaky) were examined.
For the clap, the wings accelerate towards each other during the first
20% of the stroke. The forces plateau until the end of the stroke as
the wings begin to rotated and clap together. For the clap, the peak
in the drag coefficients at the end of the stroke corresponds to the
large forces required to clap the wings together at low Re (Fig. 9A).
For the fling, the initial large peak in the drag coefficients
corresponds to the large forces required to fling the wings apart in a
viscous fluid (Fig. 9B). The drag coefficients then plateau as the
wings translate apart. The peak drag is lowered for the porous case
compared with the solid case, and this drag-reducing effect increases
rapidly for Le>2.8×10−4.
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zero, which is equivalent to a solid wing. (B) Drag coefficients as a function of
dimensionless time.



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

3904

RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.084897

Fig. 10 shows the corresponding lift coefficients as a function of
time (fraction of stroke) for Re=10. The solid wing case and four
leakiness values ranging from 2.8×10−4 (least leaky) to 2.3×10−1

(most leaky) were examined. During the upstroke, the peak in the
lift coefficients at the end of the stroke corresponds to the lift
augmentation effect generated by the clap (Fig. 10A). During the
downstroke, the initial large peak in the lift coefficients
corresponds to the lift-augmenting effect of the fling generated
during wing rotation (Fig. 10B). This lift-augmenting effect
continues for some time during wing translation. In general, the
average and peak lift values are lower for the porous case
compared with the solid case, and this effect increases rapidly for
Le>2.8×10−2.

Fig. 11 shows the drag coefficients as a function of time (fraction
of stroke) for Re=4. The dimensionless porosities examined were the
same as in Fig. 9. During the clap, the wings initially accelerate
towards each other, and then the forces plateau until the effect of the
other wing is felt. Towards the end of the stroke, the wings begin to
rotate and clap together. The large peak in the drag coefficients
corresponds to the force required to clap the wings together
(Fig. 11A). During the fling, the initial large peaks correspond to the
forces required to rapidly fling the wings apart (Fig. 11B). The drag
coefficients then plateau as the wings translate apart. The peak drag
is lowered for the porous cases compared with the corresponding
solid cases. The reduction in peak drag is perceived more for the
Re=4 case than for Re=10.

Snapshots of the vorticity fields with velocity vectors are shown
in Fig. 12 for fling at Re=10 for a solid wing (Le=0) and a porous
wing (Le=2.3×10−1). The vorticity and velocity fields are very
similar with and without the addition of porosity. During the clap

(not shown), a strong downward jet is generated between the wings
that is responsible for some lift augmentation. During the fling, two
large leading edge vortices are formed, and no trailing edge vortices
are formed initially. This vortical asymmetry (strong leading edge
vortices and weak trailing edge vortices) increases the circulation
about the wings and augments the lift generated. The leading and
trailing edge vortices are more diffuse for the porous case, but the
basic flow patterns are the same.

Effect of initial gap width between wings
Fig. 13 shows the lift and drag coefficients as a function of time
(fraction of stroke) during a fling for Re=10 and Le=2.3×10−1. The
initial gap width between the centers of the wings was varied from
1/2 to 1/10 chord lengths. The large peaks in the force coefficients
correspond to forces required to fling the wings apart. The peak drag
forces continue to decrease as the initial gap between the wings is
increased. Changes in the peak lift force generated were small in
comparison to the drag forces.

Average and peak forces
Peak drag coefficients generated during the fling are shown in
Fig. 14 as functions of Re. While decreasing Re increases the peak
drag coefficient, the inclusion of wing leakiness decreases this value
for a particular Re. For leakiness values relevant to thrips (Le>0.15),
the reduction in peak drag is of the order of 50% or more. The
scaled porosity was set to 0 (for the case of the solid wing), 2×10−5,
2×10−3, 8×10−3 and 16×10−3. Note that the peak drag coefficients for
the solid wing cases are an order of magnitude larger than the forces
required to translate a single wing. Decreasing Re increases the peak
drag coefficient from ~90 at Re=10 to ~160 at Re=4. The inclusion
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Fig. 9. Drag coefficients as a function of time (fraction of stroke) for
Re=10. (A) Drag coefficients generated during the clap. Note that Le=0
corresponds to a solid wing. The peaks in the drag coefficients at the end of
the stroke correspond to the large forces required to clap the wings together
at low Re. (B) Drag coefficients generated during fling. The initial large peak
in the drag coefficients corresponds to the large forces required to fling the
wings apart in a viscous fluid. The peak drag force is reduced for the porous
case compared with the solid case.
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Peak lift is reduced for the porous case, but not as much as the peak drag.
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of wing porosity decreases the peak drag coefficient for each Re.
The reduction in drag is significant for λ>10−4.

The average lift to drag ratios calculated during the fling
downstroke are shown in Fig. 15 as functions of the leakiness, Le.
The Re was set to 10, 8, 6 and 4. Fig. 15A shows that average lift
over the entire downstroke is maximized for the case of a solid wing
(Le=0) for all Reynolds numbers. The average lift slowly decreases
until Le≈5.0×10–2 and then lift begins to quickly decrease for
Le>5.0×10–2. Average drag over the entire downstroke is also
highest for the case of the solid wing (Le=0) and increases with
decreasing Re. The average drag also decreases with increasing
leakiness. Lift over drag is maximized when Le is set to about
7.5×10−2 for all Re (Fig. 15C). In these cases, the large peaks in drag
generated as the wings are brought together are substantially
reduced, but the lift coefficients are not significantly decreased.

DISCUSSION
As a result of many experimental, computational and theoretical
studies, much is known about the aerodynamic mechanisms that
generate lift in larger insects (Dickinson et al., 1999; Ellington,
1999; Liu et al., 1998; Ramamutri and Sandberg, 2002; Birch and
Dickinson, 2003; Mao and Wu, 2003; Usherwood, 2003). Insect
aerodynamics are fundamentally different, however, at the lowest Re
observed for insects because of the significant viscous effects that
characterize these flows. Computational work shows that at lower
Re, the leading and trailing edge vortices remain attached to single
wings during translation, resulting in reduced lift coefficients and
increased drag coefficients (Miller and Peskin, 2004). An
aerodynamic feature observed in the flight of small insects that
might compensate for this loss of lift is the predominant use of clap
and fling (Ellington, 1999; Dudley, 2000). Numerical simulations

suggest that the clap and fling mechanism works best in terms of lift
production at lower Re, so it is perhaps not surprising that most tiny
insects use it (Miller and Peskin, 2005; Miller and Peskin, 2009).
What has been largely ignored in most analytical and numerical
studies, however, is the very large drag forces that are generated
during the clap and fling at lower Re. Results from a computational
study by Miller and Peskin (Miller and Peskin, 2009) suggest that
flexibility reduces the large drag forces generated during clap and
fling while maintaining lift for a certain range of wing flexibilities.
However, the drag forces generated for during clap and fling are still
3–5 times greater than during single wing translation for biologically
realistic flexibilities.

In this paper, the role of bristled wing structures was explored as
another mechanism to reduce the drag required to clap together and
fling apart wings at lower Re. Although it has been suggested that
this wing design enhances flight performance at low Re, no
experimental or computational study has supported this claim. In
fact, Sunada et al. (Sunada et al., 2002) found no aerodynamic
benefit when they compared lift and drag coefficients generated in
physical models of fringed and solid wings at a Reynolds number of
10. When wing–wing interactions are considered, however, the
highest lift over drag ratios are found for leakiness values of about
Le=7.5×10–2. This is primarily due to the reduced cost of rapidly
flapping together and flinging apart porous wings in a viscous fluid.
It has been shown previously in experiments with physical models
that the movement of bristles near a boundary increases the flow
between the bristles (Loudon et al., 1994). Similarly, the motion of
two wings in close proximity can also increase the flow between the
bristles and reduce the drag forces acting on each structure.

The relevant range of dimensionless porosities or leakiness for
thrips wings is 0.15–0.28. These values are beyond the range where
lift over drag is optimized, suggesting that the bristles reduce the
total force required to clap the wings together and fling them apart
rather than augmenting lift or lift over drag. As the majority of the
forces acting on each wing during the end of the clap and the
beginning of the fling are in opposite directions and cancel, it seems
reasonable to reduce this force so as to decrease both the cost and
peak force requirements for flight. As the lift and drag forces are
reduced proportionally, the changes in lift over drag are modest for
biologically relevant ranges of porosity.

Possible rarefied effects
At the scale of flow between each individual bristle, the continuum
assumption for the fluid may introduce errors (Liu and Aono, 2009).
The Knudsen number, Kn, gives a measure of the mean free path of
a molecule over the characteristic length scale and is given by the
equation:

where kB is the Boltzmann constant, T is the thermodynamic
temperature, p is the total pressure, σ is the particle hard shell
diameter, λ is the mean free path and L is the characteristic length
scale. In this case, L is the length between bristles. Assuming that
thrips bristles are 2 μm in diameter with a 20 μm gap (Ellington,
1980), and standard temperature and pressure, the Knudsen
number is about 0.004. Fluids are well described by continuum
laws for Kn<0.001. For 0.001<Kn<1, the no-slip condition is
violated, and these effects may be accounted for by increasing the
amount of slip between the boundary and the fluid (Dyson et al.,
2008), and this may be done in the simulations by increasing the
leakiness.

=
σ

= λ
Kn

k T

pL L2π
, (11)B
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Fig. 11. Drag coefficients as a function of time (fraction of stroke) for
Re=4. (A) Drag coefficients generated during the clap. The large peaks in the
drag coefficients correspond to the force required to clap the wings together.
(B) Drag coefficients generated during the fling. The initial large peaks
correspond to the forces required to rapidly fling the wings apart. The peak
drag forces are lowered for the porous cases compared with the
corresponding solid cases.
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Intermittent parachuting as a dispersal mechanism
This paper also presents the first analysis of the wing motion of a
tiny insect with bristled wings. The clap and fling motion was
observed for all individuals, although the wings did not come close
enough to touch during the clap. We also obtained some of the first
footage of a passive parachuting mechanism being employed by the
smallest flying insects. Although we were not able to track the thrips
for long periods of flight, the footage does suggest that thrips may
alternate between passive and active flight modes as they disperse
over distances of miles. The advantage here is that periods of
passive flight could conserve significant amounts of energy during
long distance dispersal. Longer distance tracking studies are needed,
however, to verify this claim.

MATERIALS AND METHODS
Video recordings of free-flying tiny insects
Thrips were collected in Chapel Hill, NC, USA, during late July to early
August, 2009 from daylilies and gardenia flowers. The insects and flowers
were brought to the lab and filmed within 8 h of collection. A pipette tip was

placed over the thrips to allow them to crawl on to the inner surface of the tip.
The pipette was then suspended upside down in the field of view of the
cameras so that the thrips could crawl down the tube and take-off from the tip.

Two high-speed cameras (Phantom v7.1, Vision Research, Wayne, NJ,
USA) were each equipped with a 55 mm micro-Nikkor lens and 27.5 mm
extension tube and arranged perpendicularly for stereo filming (see Fig. 16).
Magnifying lenses were used to aim the beams from halogen bulbs directly
into the camera apertures. The thrips were filmed at 4000 frames s−1 with a
15–30 μs exposure time. The cameras were calibrated by waving a wand of
known dimension in the field of view. Calibration and analysis of the wing
motion was performed using DLTdv5 software (Hedrick, 2008) with
additional custom-written routines to perform the structure-from-motion
wand-wave calibration. DLTdv5 is a digitizing environment written in
MATLAB designed to acquire 3D coordinates from multiple video sources
calibrated via a set of direct linear transformation (DLT) coefficients.
Recording of the thrips began when they were observed to prepare for flight
by raising their wings.

Computational method
The immersed boundary method (Peskin, 2002) was used to solve the fully
coupled fluid–structure interaction problem of two porous wings performing
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Fig. 12. Snapshots of the vorticity fields with velocity vectors for the fling at Re=10. i–v represent a snapshot in time taken at 20%, 40%, 60%, 80% and
100% of the half stroke. (A) A solid wing (Le=0) and (B) a porous wing (Le=2.3×10−1). During the fling, two large leading edge vortices are formed that enhance
the lift acting on each wing. The larger leading edge vortices remain for some time as the wings translate apart. The vorticity and velocity fields for the porous
and solid wings are not substantially different, but the magnitude of vorticity is slightly decreased for the porous case.
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a clap and a fling. The full Navier–Stokes equations were solved on a fixed
Cartesian grid, and the elastic boundary equations were discretized on a
moving Lagrangian grid. The immersed boundary method provides an
efficient way of handling the interaction between these two grids.

A description of the two-dimensional, non-porous immersed boundary
method is given below. The equations of fluid motion are the incompressible
Navier–Stokes equations:

( )ρ + ⋅∇ = ∇ + μΔ +t t t p t t tu x u x u x x u x f x( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,     (12)t

∇ ⋅ =tu x( , ) 0 , (13)

where u(x,t) is the fluid velocity at Cartesian coordinate x and time t, p(x,t)
is the pressure and f(x,t) is the force per unit area acting on the fluid. The
interaction between the fluid and the boundary is given by the following
equations:

where δ(x) is a 2D delta function. Eqn 14 applies force from the boundary
to the fluid grid, and Eqn 15 evaluates the local fluid velocity at the
boundary. The boundary is then moved at the local fluid velocity, and this
enforces the no-slip condition. The exact discretization used in these
simulations has been described elsewhere (Peskin and McQueen, 1996;
Miller and Peskin, 2009).

The force F(q,t) is specific to the problem. Boundaries have been modeled
in the immersed boundary framework that include active elastic forces due
to muscle contraction (Peskin and McQueen, 1996), cohesive forces

∫ ( )= δ −t q t q t qf x F x X( , ) ( , ) ( , ) d , (14)

∫( ) ( )= = δ −q t q t t q tX U X u x x X x( , ) ( , ) ( , ) ( , ) d , (15)t
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between boundaries or cells (Fogelson and Guy, 2008), and the action of
dynein molecular motors (Dillon et al., 2007). In a simple case where
boundary points are tethered to target points, the equation describing the
force applied to the fluid by the boundary is:

where ktarg is a stiffness coefficient and Y(q,t) is the prescribed position of
the target boundary.
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Movie 1. Thrips during take off. This video shows several wingbeats of a thrips during take off flight at 4000 fps.

Movie 2. Clap and fling motion of thrips during take off. This video, filmed at 4000 fps, shows the clap and fling motion 
of the thrips wings during the first several wingbeats after take off.
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http://www.biologists.com/JEB_Movies/JEB084897/Movie1.mov
http://www.biologists.com/JEB_Movies/JEB084897/Movie2.mov


Movie 3. Front view of thrips take off. This video shows a front view of the thrips during the first several wing beats after 
take off. It was filmed at 4000 fps.

Movie 4. Thrips parachuting. In this video, the thrips beats its wings initially during take off but then spreads its wings 
and passively floats downward. This behaviour is reminiscent of a dandelion seed and is thought to be an intermittent 
parachuting behaviour.
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