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Movement ecology and the integration of ecology, behavior
and biomechanics

Recent advances in mechanistic modeling and tracking technology
have enriched our capacity to disentangle the key parameters
affecting movement processes and to characterize movement
patterns accurately. These advances set the stage for integrating the
four existing paradigms for studying movement – the random,
biomechanical, cognitive and optimality approaches (Fig.1) – in
the form of a new cohesive ‘movement ecology’ framework
(Nathan et al., 2008). The biomechanical paradigm elucidates the
machineries that enable individuals or propagules to move,
including their physical mechanics, energetics and physiology, and
thus focuses on the study of the motion capacity of individual
organisms. The cognitive paradigm explores the mechanisms of
gathering, processing and responding to the environment in a way
that produces nonrandom movement in time and space and thus
focuses on the navigation capacity of the individual. The optimality
paradigm examines the relative efficacy of different movement
strategies in optimizing some particular fitness currencies (e.g.
energy gain or survival) over ecological or evolutionary time-

scales, and thus focuses mostly on the external factors affecting the
internal state of the individual. The random paradigm analyzes the
fit of observed animal tracks to various random walk models to
assess, for example, search efficiency and thus focuses exclusively
on the movement patterns. The movement ecology framework
explicitly combines these basic components of movement and the
links among them (Fig.1) (Nathan et al., 2008), which can be
identified across all movement types and taxonomic groups
(Holyoak et al., 2008). Thus, this framework offers a template for
transdisciplinary integration of the four existing movement
research paradigms (Fig.1) (Nathan et al., 2008) to create jointly
the new paradigm of movement ecology, devoted to the
comprehensive study of all biological (whole-organism) movement
phenomena.

Movement ecology thus aims at unifying organismal movement
research and aiding the development of a general theory of whole-
organism movements (Nathan et al., 2008). To facilitate this
unification, we need tools that can provide simultaneous
information about the movement, energy expenditure and behavior
of the studied organisms, and the environmental conditions they
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Summary
Integrating biomechanics, behavior and ecology requires a mechanistic understanding of the processes producing the movement
of animals. This calls for contemporaneous biomechanical, behavioral and environmental data along movement pathways. A
recently formulated unifying movement ecology paradigm facilitates the integration of existing biomechanics, optimality,
cognitive and random paradigms for studying movement. We focus on the use of tri-axial acceleration (ACC) data to identify
behavioral modes of GPS-tracked free-ranging wild animals and demonstrate its application to study the movements of griffon
vultures (Gyps fulvus, Hablizl 1783). In particular, we explore a selection of nonlinear and decision tree methods that include
support vector machines, classification and regression trees, random forest methods and artificial neural networks and compare
them with linear discriminant analysis (LDA) as a baseline for classifying behavioral modes. Using a dataset of 1035 ground-
truthed ACC segments, we found that all methods can accurately classify behavior (80–90%) and, as expected, all nonlinear
methods outperformed LDA. We also illustrate how ACC-identified behavioral modes provide the means to examine how vulture
flight is affected by environmental factors, hence facilitating the integration of behavioral, biomechanical and ecological data. Our
analysis of just over three-quarters of a million GPS and ACC measurements obtained from 43 free-ranging vultures across 9783
vulture-days suggests that their annual breeding schedule might be selected primarily in response to seasonal conditions
favoring rising-air columns (thermals) and that rare long-range forays of up to 1750km from the home range are performed
despite potentially heavy energetic costs and a low rate of food intake, presumably to explore new breeding, social and long-term
resource location opportunities.

Supplementary material available online at http://jeb.biologists.org/cgi/content/full/215/6/986/DC1
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encounter en route. The primary focus to date has been on
integrating movement and environmental data (Boettiger et al.,
2011; Dalziel et al., 2008; Fryxell et al., 2008; Getz and Saltz, 2008;
Sapir et al., 2011; Vanak et al., 2010; Yott et al., 2011). The link
between movement, energy expenditure and behavior has been
tested less often in free-ranging animals in the wild (but see Green
et al., 2009a; Sapir et al., 2010; Wilson et al., 2006). To facilitate
the less-studied link between movement, energy expenditure and
behavior, we focus here on a promising tool that uses tri-axial
acceleration (ACC) data to assess energy expenditure, and
especially to identify the behavioral modes of free-ranging wild
animals along large-scale long-term movement pathways, a task
that cannot be addressed by means of direct observations.

Movement research has recently experienced a rapid upsurge
(Holyoak et al., 2008) with the advent of movement tracking tools
and GPS devices in particular (Hebblewhite and Haydon, 2010;
Wikelski et al., 2007), as well as various stochastic methods to
analyze animal movements (Smouse et al., 2010). Nevertheless,
movement data, however accurate, are insufficient on their own to
infer links among biomechanical, behavioral and ecological
processes driving the movement of individuals. Here, we use
simultaneous GPS and ACC measurements to identify both the
behaviors and location of the tracked animal, as well as 
the estimated energy expenditure along the track, to infer the
biomechanical, behavioral and environmental drivers along the
movement pathway. In the following, we briefly review the use of
ACC data to assess energy expenditure and, in particular, to identify
behavioral modes. We outline a general protocol for obtaining
ACC-based behavioral classification and focus on one crucial step
– the identification of behavioral modes by supervised machine
learning algorithms. Then, we apply these techniques to classify the
behavioral modes of vultures and illustrate the combined use of
GPS and ACC data to examine preliminarily several interactions
between behavioral, ecological and biomechanical aspects of their
movements at relatively long temporal and large spatial scales.

Using acceleration data to identify behavioral modes
Under the general family of biologging techniques (Cooke et al.,
2004; Ropert-Coudert and Wilson, 2005; Rutz and Hays, 2009), tri-

axial accelerometers are particularly promising in providing data
that can elucidate links between biomechanical and ecological
processes in the context of movement. The use of accelerometers
for studying movement of organisms stems from epidemiological
studies, originated in the 1950s, aimed at assessing changes in
human physical activity in relation to health status (Chen and
Bassett, 2005; Plasqui and Westerterp, 2007; Yang and Hsu, 2010).
The technique has been applied more recently to study the
movement, behavior and physiology of animals as well (Fahlman
et al., 2008; Gleiss et al., 2010; Green et al., 2009b; Halsey et al.,
2009a; Halsey et al., 2008; Halsey et al., 2009b; Halsey et al., 2011;
Martiskainen et al., 2009; Moreau et al., 2009; Payne et al., 2011;
Sakamoto et al., 2009; Scheibe and Gromann, 2006; Shepard et al.,
2009a; Shepard et al., 2009b; Shepard et al., 2008; Watanabe et al.,
2005; Wilson et al., 2006; Yoda et al., 2001; Yoda et al., 1999).

Accelerometers provide measures of two distinct types of
acceleration: static and dynamic acceleration. Static acceleration is
due to the force of the gravitation field of the Earth (and the
orientation of the accelerometer with respect to that field), whereas
dynamic acceleration is due to animal movement (Shepard et al.,
2008). Advances in micro-electromechanical technology have
yielded miniaturized low-cost portable units that are highly reliable
in measurement and incurring little variation over time. Hence they
can be carried by a wide range of free-ranging animals without
impeding movement. Accelerometers can be designed to record
acceleration in three directions (Fig.2A). An important summary
statistic that is often used when discussing ACC data series is
overall dynamic body acceleration (ODBA), which is a measure of
the aggregate acceleration of a subject (Shepard et al., 2008; Wilson
et al., 2006). ODBA is calculated by subtracting the static
component from the total ACC values for each axis and then
summing the resulting dynamic components across axes. Following
intensive application of ACC data to quantify human energy
expenditure (Bouten et al., 1994; Crouter et al., 2006; Montoye et
al., 1983; Plasqui and Westerterp, 2007), the use of ODBA and
related measures for assessing energy expenditure of free-ranging
animals is progressively being adopted in studies of animal
behavior, ecology and physiology (Fahlman et al., 2008; Gleiss et
al., 2010; Green et al., 2009b; Halsey et al., 2009b; Halsey et al.,
2011; Shepard et al., 2009b; Wilson et al., 2006). As ODBA can
help assess energy expenditure, ACC data can contribute to the
integration of biomechanics, behavior and ecology. We
demonstrate the application of ODBA in one of our empirical
examples. As this particular use of ACC data has recently been
reviewed and illustrated in various studies (Fahlman et al., 2008;
Gleiss et al., 2010; Green et al., 2009b; Halsey et al., 2009b; Halsey
et al., 2011; Shepard et al., 2009b; Wilson et al., 2006), other
applications of ODBA will not be elaborated here.

In addition to the determination of physiological processes, ACC
data have been used in human health research to classify
automatically a subject’s behavioral modes such as sitting, walking
or running. These efforts were designed to provide additional data
from wearable digital processors able to compute context-specific
features in real-time (e.g. DeVaul and Dunn, 2001). Overall,
accelerometers have been widely applied to classify human
behavior by means of diverse data-analysis tools (Godfrey et al.,
2008; Preece et al., 2009).

The application of accelerometers to identifying animal behavioral
modes is relatively new; to our knowledge, Yoda and colleagues
(Yoda et al., 1999) were the first to apply this technology to free-
ranging wild animals. A general protocol for such studies begins with
capturing and tagging the animals with GPS–ACC devices. It then
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continues with collecting the data either directly by retrapping the
animal, or by remote data retrieval through radio link, cellular phone
networks or satellite communication. In parallel, ACC measurements
can be calibrated and ground-truthed by observing tagged animals in
the field during ACC measurements. The ground-truthed ACC
segments are then used to train classification or machine-learning
algorithms that are then validated against independent observations
and subsequently used to classify unobserved behaviors from non-
ground-truthed ACC data. Individual applications of this protocol
can skip some stages or apply different methods at various stages.
For example, most studies of free-ranging wild animals, including
penguins (Yoda et al., 2001), cormorants (Laich et al., 2008) and
raptors (Halsey et al., 2009a), have discriminated behavior by visual
observation of the ACC data, without specifically developing a
classification function. Other studies have applied several
classification techniques such as linear discriminant analysis (LDA),
k-means clustering and support vector machines (SVMs) to
automatically discern different behaviors of domestic animals such
as cats (Watanabe et al., 2005), cows (Martiskainen et al., 2009;
Nielsen et al., 2010) and free-ranging wild shags (Sakamoto et al.,
2009). The latter study proposed an approach to skip the ground-
truthing stage, and yet not all basic behaviors were discernible by the
proposed approach.

Machine learning algorithms
Here, we implement and compare five supervised machine-learning
algorithms: LDA, SVMs, classification and regression trees (CART),
random forest (RF) and artificial neural networks (ANNs). The
algorithms selected are those most commonly used for various
pattern recognition and classification tasks. We perform a
comparative analysis using LDA as a baseline, anticipating that the
other methods, through incorporation of nonlinearities or decision
trees to separate out categories, are likely to perform better than LDA.
We applied these algorithms to our ACC vulture data using the R
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programming environment. We employed a variety of R packages to
implement the various methods, as detailed in supplementary
material TableS1. The following list summarizes the methods.

Linear discriminant analysis
LDA reduces the dimensionality of the data by maximizing the
variance between the classes while minimizing the variance within
the classes. LDA is a parametric method that assumes unimodal
Gaussian distributions of classes. Often this is unlikely to be the
case. The linear boundaries of LDA are also a restriction. Other
variants, such as quadratic discriminant analysis, relax this
restriction. In any event, the use of such restrictive assumptions can,
in practice, have the beneficial effect of lessening the likelihood of
over fitting (which then incorporates the particulars of the noise,
thereby degrading predictive performance), and generally LDA is
found to perform acceptably well.

Support vector machines
SVMs construct a hyperplane to separate transformed observations,
while trying to maximize the distance of observations from this
separating hyperplane. These methods were developed in the 1990s
and have since become quite popular (Cortes and Vapnik, 1995)
because they have a strong theoretical foundation and often produce
good results. Fundamentally, SVM is a binary classifier. Multiclass
classifications can be implemented by treating such problems as a
set of binary ones – for instance, by constructing a set of classifiers,
where each classifier compares one of the classes versus all the
other classes. SVMs are relatively computationally intensive.

Classification and regression trees
CART methods can be used either for predicting continuous
variables or choosing among categories. In the categorical case, a
set of hierarchical decision rules is developed that can be used to
predict the class of unclassified samples. Each rule can branch into
another rule or a terminal category. CART has a number of
advantageous features. Its decision rules can be applied very
quickly and are also relatively easy to interpret. One of the potential
weaknesses of CART is over-fitting, which can be mitigated
through a pruning operation that reduces the number of decision
rules incorporated in the tree. Another potential issue is the
hierarchical partitioning which reduces the effective sample sizes
making it more difficult to identify rules and trends in each
subsample. Relationships between variables can also be difficult to
identify owing to this hierarchical partitioning.

Random forests
RFs are ensemble classifiers in which sets of classification trees are
constructed using a procedure similar to CART, but including
introduced stochasticity (Breiman, 2001). Instead of potentially
using all the variables to determine the best split at each node, only
a randomly selected subset of variables is used. RF offers increased
accuracy in relation to CART. However, this accuracy comes at a
cost: RFs are more computationally expensive to train and to use
as predictors; it is no longer possible to display directly and
interpret the CART tree (there are many separate and distinct trees);
and, given the stochastic nature of the algorithm, each invocation
of the algorithm will result in different decision rules and slightly
different results.

Artificial neural networks
ANNs are inspired by biological neural networks and are
collections of interconnected ‘neurons’ that sum their inputs and
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Fig.2. (A)Schematic representation of a tri-axial accelerometer attached to
a vulture, recording linear acceleration along the x (medial–lateral, sway), 
y (anterior–posterior, surge) and z (inferior–superior, heave) axes. (B)Two
illustrative signals recorded by a tri-axial accelerometer (3.3Hz per axis),
demonstrating switches from standing through running to eating and from
passive to active flight.
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release an output that is governed by an activation function (often
sigmoidal in shape). Of the many designs for neural networks,
this study uses the most common – a single hidden-layer
perceptron network. In our implementation, we allowed one input
node for each summary statistic derived from the ACC data, as
described below, and one output node for each of the
classification options (our defined set of possible behavioral
modes). The number of nodes we allowed for the hidden layer
was 30. ANNs can be very good at learning and can successfully
process complex inputs such as raw data that other methods
presented here might be unable to handle. However, it has been
argued that a fair amount of ‘art’ is required in the process of
building an ANN, and its design can be more subjective than the
usage of the other methods discussed here because selection of
the number of hidden nodes and steepness of the activation
function are rather ad hoc. Additionally, the training stage of
network construction can be computationally intensive.

Ten-fold cross-validated parameter tuning (i.e. the training data
set was one-tenth the size of the testing data set) was implemented
to ensure robustness in the performance of each algorithm. It is
important to note, however, that this tuning should not be
considered exhaustive. In all likelihood, there are ways in which
additional, small performance improvements could be gained from
each of the algorithms; however, the focus of this paper was a
comparative analysis of methods, and minor improvements to all
of the methods can be made once one of the methods is selected as
the method-of-choice in a particular application. For instance,
CART can be slightly improved by performing a principal
component analysis (PCA) on the data prior to training. However,
one of the primary benefits of CART is that the resulting tree
diagram is interpretable. If PCA is applied prior to tree building,
then the output is no longer directly interpretable as the decision
rules are based on the principal components rather than the original
summary statistics. For this reason, we did not conduct a
preliminary PCA as we felt that, in the context of our unifying
movement ecology paradigm (Fig.1), our ability to interpret the
results biomechanically supersedes any small gains in the accuracy
of classifying particular behaviors.

Identifying vulture behavioral modes
We illustrate the general protocol outlined above by using ACC
data to classify behaviors of free-ranging griffon vultures (Gyps
fulvus, Hablizl 1783). The griffon vulture is of major concern in
conservation because many populations have dramatically declined
throughout the species range. In Israel, the Nature Protection
Authority (NPA) operates a nationwide monitoring and
management program that includes massive captures (83±60 new
individuals per year, and 120±60 recaptures, based on NPA data
from 2006–2010) using walk-in traps during the non-breeding
season (October to December) and year-round supplementation of
natural feeding through provision of new carcasses every 2–4days
throughout the year at 25 feeding stations. Overall, 43 adult
(>4years old) trapped birds were equipped with the GPS–ACC tags
during three field seasons of the years 2008, 2009 and 2010 (10,
11 and 22 tags, respectively). These vultures were also marked with
patagial tags and color rings, allowing individual identification in
the field. We emphasize that all our tagged birds were adults that
were previously marked by the NPA (therefore indicating resident
birds), and our tracking data confirmed the general notion that
adults in the study populations do not migrate on a regular basis.
Young (first- to fourth-year) birds, however, can exhibit migratory
movements, given that several satellite-tracked subadult birds

tagged in Israel were found to winter in Sudan and Saudi Arabia
or originated from Turkey and wintered in Israel (O. Hatzofe,
personal communication).

GPS–ACC tags
Vultures were fitted with 160g GPS–ACC tags, using 30g
harnesses in a backpack configuration (i.e. the unit lies at the center
of the back and is tied with a Teflon harness designed to tear apart
after several years). The tag plus harness constitute 2.4% of the
mean body mass of tagged vultures. The tags (E-Obs GmbH;
Munich, Germany) include three independent functions: (1) a GPS
device providing the ground speed and the position in three
dimensions (longitude, latitude and elevation) for each data-point.
GPS accuracy is 5m (50% of the points are within 5m from the
true location); (2) a 3D accelerometer measuring ACC at three
perpendicular axes at a frequency of 3.3Hz each; and (3) a pinger
emitting a tag-specific UHF-signal. The pinger facilitates fieldwork
by helping detection of the bird from afar and by signaling the exact
time of ACC and GPS measurements, which is essential for precise
ACC calibration observations. Data of the GPS and ACC
components are stored on board until they are downloaded through
UHF communication to a handheld receiver.

Tag sampling protocol
Owing to the diurnal activity regime typical of vultures,
transmitters were set to work in a 12h duty cycle starting 07:00h
for tags deployed in 2008, and for a 13h duty cycle starting at
06:30h for tags deployed in 2009 and 2010. During working hours,
GPS locations were recorded every 10min (26tags, track duration:
304±147days; mean±s.d.; 73–533days minimum and maximum
duration) or 1min (17tags, track duration: 109±56 days;
34–188days). For the purpose of the analysis presented here, 1min
tags were subsampled at 10min intervals. Accelerometers were
sampled at 10min intervals for durations of 24.6s (all tags in 2008
and two 1min tags in 2009), 20.4s (9tags in 2009) or 16.2s (all
tags in 2010). Variation in our sampling protocols across years
reflects our trade-off between intensity of data collected along
movement paths and the total length of each path, as well as data
storage limitations, as we learned more about battery performance
and data download frequency throughout our study.

Field and zoo observations
We searched for vultures in the field on a weekly or bi-weekly basis
for data retrieval and for behavioral observations required for the
ACC classification. Overall, we downloaded data from 43
individuals, comprising 756,764 GPS–ACC measurements obtained
across 9783vulture-days (i.e. almost 27years). Observations were
made using telescopes (Televid 77, Leica, Germany) and binoculars.
Behaviors (during the exact times of ACC measurements) were
observed at various places, including roosting sites, feeding sites and
birds on the wing. In addition, two tags were deployed on captive
vultures in the Tisch family Biblical Zoo at Jerusalem for behavioral
observations. The dataset includes 905 ground-truthed ACC bouts
from which we extracted 1035 segments of seven different behaviors:
active flight, passive flight (soaring–gliding), eating, lying down (a
horizontal position in which the abdomen is in full contact with the
surface), preening, running (including other active behaviors on the
ground) and standing.

Data processing (GPS)
Daily movement properties were analyzed from the GPS data: ‘roost
departure time’ was calculated as the first non-static point (speed

THE JOURNAL OF EXPERIMENTAL BIOLOGY



990

>4ms–1) as long as the vulture flew at least 2km from its initial
location during the day. In ~14% of the days, the vultures did not
leave the roost, and, in ~9% of the days, they left earlier than the first
GPS sample (07:00 or 06:30h). Similarly, ‘roost arrival time’ was
defined by the first static point that was within 2km of the final night
location. In ~4% of the days, the vultures arrived to the roost later
than the last GPS point (19:00 or 19:30h). Overall, the Euclidian
distance between the last point of the day and the first point of the
following morning was within 5.8 km range for 95% of the nights.
The ‘daily traveled distance’ is calculated by summing all distances
between successive points, and the ‘maximal displacement’ is
defined as the Euclidean distance between the first point and the
farthest location of the day. Flight ‘straightness’ is the ratio between
travel distance up to this point and the max displacement itself. We
preferred this index over the ratio between daily traveled distance
and daily displacement (between the start and the end point of the
day) as vultures show a tendency to return to the same or to a nearby
roost site. This generates a short daily displacement distance that
masks any differences in flight pattern. The daily path was also
scanned for day-stops, defined as locations where the vulture landed
and stayed static (speed <4ms–1) and within 400m for more than
20min. Vultures usually made one or two day-stops and rarely more
than four a day.

Data processing (ACC)
The ACC sensor output in millivolts was transformed to
acceleration (ms–2) units using tag-specific calibration values
obtained prior to tag deployment. For each ACC measurement, we
classified one of the behaviors using the ANN method. Also the
total daily ODBA was calculated using a window size of 6s
(18data-points per axis). In addition to the ACC-based
classification, we used GPS data to enhance the validity of the
behavioral classification. For instance, the proportion of flight time
spent in active (wing flapping) versus passive (gliding–soaring)
flights was calculated only for sections identified as flight by the
GPS data (speed and elevation). This maximizes the signal-to-noise
ratio in the data by excluding non-flight data points.

Correct identification of unobserved eating events is essential for
assessing energy intake. We scanned ACC data recorded when
vultures were on the ground (either at their morning or evening
roost or during a day-stop) for eating behavior. Vultures usually
spend a few hours at a carcass site, during which they eat and fight
over the carcass for 30min or more. Thus, to minimize false-
positive errors, we defined an eating event as: (i) more than one
ACC measurement during the stop being classified as ‘eating’ (97%
of the classified events); (ii) a single ‘eating’ observation being
accompanied by two or more ‘running’ measurements (indicating
fight and/or hop) within the same stop (2% of the classified events);
or (iii) a single ‘eating’ observation that occurred in a specific time
and location when and where other tagged vultures were eating (1%
of the classified events).

Summary statistics selection
To make the relationship between ACC data and behaviors more
interpretable, we calculated summary statistics from the ACC
data (after transformation to ms–2) and used these for the
machine-learning algorithms, namely mean, standard deviation,
skewness, kurtosis, maximum value, minimum value,
autocorrelation (for a displacement of one measurement) and
trend (the coefficient for a linear regression through the data).
These statistics were calculated for each of the three axes, along
with a fourth quantity, q, calculated as the square-root of the sum-
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of-squares of the three axes (i.e. the length of the diagonal of the
x–y–z volume involved). Tests using more-robust versions of
statistical measures – median, median absolute deviation – did not
yield significant differences.

Additionally the three, pair-wise correlations between the x
(sway), y (surge) and z (heave) ACC series were calculated. ODBA
was calculated and used as a summary statistic too (Shepard et al.,
2008; Wilson et al., 2006). Finally, the inclination (cos–1[z/q])
and azimuth (tan–1[y/x]) for the q axis were determined and their
circular variances included as summary statistics. Overall, we used
38 summary statistics in our analyses.

A study classifying bovine behavior from ACC data used 28
summary statistics, including, mean, standard deviation, skewness,
kurtosis, maximum value, minimum value and energy for each of the
three axes of the accelerometer, pairwise correlations between the
axes, and vector length (Martiskainen et al., 2009). We did not
include vector length in our analysis, as it would be a function of the
analysis decisions and not inherent in the data. The Martiskainen et
al. energy measure was designed to look at periodic behavior of their
data and, in a prior paper, it was determined to be the least important
of the summary statistics that were examined (Ravi et al., 2005).
Other researchers have looked at relating frequency analyses of ACC
data to observed behaviors (Sakamoto et al., 2009; Scheibe and
Gromann, 2006; Watanabe et al., 2005). We visually inspected the
power spectrum of the ACC time series but could not identify strong
patterns in the frequency domain. Possibly, the granularity of our
measurements was too coarse (3.33Hz per axis) to identify these.
Studies relating frequency to behavior have used per-axis frequencies
ranging from 64Hz (Sakamoto et al., 2009) through 33.3Hz (Scheibe
and Gromann, 2006) to 16Hz (Watanabe et al., 2005), which are
significantly higher than our sampling frequency and allow much
finer determination of frequency behavior. In general, sampling
frequency should be at least twice the frequency of the most rapid
body movement essential to characterize a behavioral mode to fulfil
the Nyquist sampling criterion (Chen and Bassett, 2005).

The choice of summary statistics can be done prior to model
training and testing, but it can also be carried out in an iterative
manner by examining model results. Supplementary material
Fig.S1 tabulates the relative importance of the different summary
statistics, as determined by looking at changes to the Gini index
used to measure errors across the RF ensemble of trees (see package
‘Random Forests’ at http://stat-www.berkeley.edu/users/breiman/
RandomForests). The relative importance of variables can change
between the methods, but this analysis is a good indicator of general
importance.

All five machine-learning methods were applied to summary
statistics of the data. Of the five implement algorithms, only ANNs
could be expected to classify behavior efficiently directly from the
ACC data before preprocessing into summary statistics. To test the
efficiency of ANN in this case, we constructed an ANN using the
basic ACC readings directly for a window of 17points as inputs
(~5s). This model achieved an accuracy averaging slightly below
80%, which was less than the accuracy of the models we trained
using the summary statistics and indicates that, by preprocessing
the ACC data into summary statistics, we actually improve ANN
classification with the size of the perceptrons we used in our
analysis (perhaps improvements could be obtained with more
hidden units than we used).

Training and testing
The 905 ground-truthed observations included 1035 segments, each
representing a single behavioral category, were taken and treated

THE JOURNAL OF EXPERIMENTAL BIOLOGY



991Acceleration, behavior and movement ecology

as distinct units. Using the repeated random subsampling cross-
validation procedure, the dataset was split into two subsamples:
70% was used for training the models and 30% was used (after
modification, see below) to test the performance of the algorithms.
This 70:30 split is an ad hoc measure but is a commonly used
division found in other machine-learning applications. Other cross-
validation techniques used in human behavior studies include the
P-fold and the leave-one-out procedures (e.g. Altun et al., 2010).

Confidence intervals for the estimated accuracy were found by
repeatedly generating stochastic 70:30 splits, evaluating model
accuracy on them, and treating the resultant set as being governed by
the Student’s t-distribution. During prediction, the methods generated
a probability or score for the different classes occurring rather than
a single result. As a result, the single most likely category determined
by this score was used for the calculation of classification errors. In
specific applications, where the cost of misclassification is high, it
might be beneficial only to accept predictions when the score rises
above some threshold and mark other values as ‘Unknown’.
Accuracy was calculated as the number of correct calculations
divided by the total number of classifications.

Of practical interest are the computational requirements of the
algorithms. Using any of the five algorithms presented here to
predict a class is extremely fast on modern computing hardware,
and the prediction time would probably not be an issue for most
users, unless real-time predictions are required or extremely large
datasets are involved. Training the algorithms, however, can take
significantly longer and is dependent on the size of the training set,
the number of summary statistics and the algorithm-specific
parameters. Performance is, of course, implementation specific; but
in our work we found both the CART and LDA methods to be
extremely fast in all cases. SVMs, RFs and ANNs were
significantly slower in training, and the ANN training duration
appeared to increase the fastest as the sizes of training set and
summary statistics increased.

The accuracies for the algorithms when trained and tested on the
segmented data are reported in Table1. The RF algorithm
performed the best, whereas LDA performed the worst. Using
Tukey’s range test, the differences between LDA and the other
algorithms is significant at the 5% level, as is the difference
between RF and the other algorithms. The differences between
SVM, ANN and CART are not significant at this level. Fifty
random subsamplings of observations were used to generate these
results.

The accuracies reported in Table1 are the best measure of the
relative performance of the different techniques for the selected
training dataset. However, because the basic ACC bouts

downloaded from the animals are not segmented and can include
more than a single behavior, we used the pre-segmented ACC bouts
to assess the absolute performance of the different techniques on
our dataset. That is, instead of using the ground-truthed segments,
each including only one behavior, the algorithms classified
behaviors in the validation set using the statistics calculated for the
whole ACC measurement bout (of 24.6s, 20.4s or 16.2s; see Tag
sampling protocol above). The methods could not be directly
trained for this task as the specification of multiple correct
classifications during training is not supported by all the algorithms
used. However, we could directly test the accuracy of the trained
classifiers on these pre-segmented bouts, and a second set of
accuracy calculations were performed using these pre-segmented
bouts and are reported in Table2. The accuracy measurements in
Table2 are less indicative for the relative performance of the
different classification techniques compared with the results in
Table1 because only in the latter procedure do both the training
and the validation subsamples include strict single-behavior
segments. However, the results in Table2 are the best measure of
how the methods perform in practice on our large dataset in which
99.9% of the ACC bouts are not segmented to include only a single
individual behavior. As can be seen, a slight across-the-board
improvement in accuracy is shown in this application compared
with the baseline of the training case.

In addition to examining the overall accuracies, it is often
useful in practice to look in more detail at the specific types of
errors made by the classification algorithms. These errors can be
presented numerically, for example using a confusion matrix, or
graphically, as in supplementary material Fig.S2, where mosaic
plots are used to illustrate the classification accuracies on a per-
behavior basis. The columns indicate the observed behaviors,
whereas the rows indicate the predicted behaviors. Correct
classifications are shown in the diagonal, green regions; incorrect
classifications are shown in the off-diagonal, red regions. The
areas of the rectangles are proportional to the number of
classifications. This information can be used several ways. For
instance, the ‘general preening’ behavior is often incorrectly
classified as ‘standing’ by the algorithms. This common error
indicates that, to improve the classifications, time might be well
be spent focused on developing measures that distinguish
between general preening and standing.

The utility of an algorithm is also determined by its ability to
help interpret the classification rules. LDA, RF, ANN and SVM are
to some extent ‘black box’ algorithms. Once trained, they can
achieve high levels of accuracy, but it is difficult to interpret the
internal rules that they use to arrive at their categorization

Table1. Accuracy (as a percentage) of the different machine
learning algorithms as trained and applied to segmented data 

95% confidence
Machine learning algorithm Mean s.d. interval

ANN 84.01 1.62 83.55, 84.47
CART 83.97 2.11 83.37, 84.57
LDA 81.3 1.81 80.79, 81.82
RF 87.67 1.67 87.19, 88.14
SVM 84.15 1.96 83.59, 84.71

ANN, artificial neural network; CART, classification and regression trees;
LDA, linear discriminant analysis; RF, random forest; SVM, support vector
machine.

N50 runs.

Table2. Accuracy (as a percentage) of the different machine
learning algorithms as trained by segmented data and applied to

pre-segmented data 

95% confidence
Machine learning algorithm Mean s.d. interval

ANN 84.81 1.92 84.27, 85.36
CART 85.95 2.02 85.38, 86.53
LDA 86.74 1.27 86.38, 87.10
RF 90.88 1.46 90.47, 91.30
SVM 87.01 1.61 86.55, 87.47

ANN, artificial neural network; CART, classification and regression trees;
LDA, linear discriminant analysis; RF, random forest; SVM, support vector
machine.

N50 runs.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



992

decisions. Important findings can be developed from the decision
rules of each method, such as the relative importance of variables,
but creating a ‘narrative’ from these rules is generally not feasible.
As seen in Fig.3, the CART algorithm has the benefit that its
decision rules are directly interpretable and can yield insights on
the classification problem at hand. Take, for example, the initial
(first-level) decision rule: whether the standard deviation of the
magnitude of the q vector is less than 0.19. As the standard
deviation of the q vector is a measure of the overall movement, a
low value indicates a low level of movement. When this value is
low, the algorithm indicates that the vulture is lying down or
standing, both relatively immobile activities compared with
running, eating and active flying. Next the two second-level
decision rules distinguish activities in which the anteroposterior
(head to tail) axis of the body is approximately perpendicular to the
ground (standing, running and preening) from activities in which
this axis is more parallel to the ground (lying down, flight and
eating). To differentiate between lying down and standing, the
algorithm considers the minimum value of the surge (y) axis
(Fig.2B), with values greater than 1.2 indicating standing as
opposed to lying down. To differentiate between activities with
ground-perpendicular versus ground-parallel anteroposterior axis
position (standing, running and preening vs flight and eating), the
mean value of the surge axis is considered. In summary, both first-
and second-level decision rules are reasonable, and a CART
algorithm can provide an after-the-fact narrative of how to predict
behaviors. Not all the decision rules are so easy to interpret (e.g.
the rule based on the skewness of the z axis), but, in general, an
examination of these rules can provide a better understanding of
the classification problem.

The analytical protocol suggested here can be further improved
by developing and testing algorithms to identify shifts in the ACC
signal within non-segmented bouts. For example, the characteristic
duration of each behavior can be identified from the ground-truthed
dataset, and a moving window of an appropriate length can be
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deployed to identify matching segments within the ACC bouts.
This can be further elaborated by estimating the probability of
different behaviors to appear sequentially using a Markov chain
model. Such tools, however, await development.

Using ACC and GPS data to link behavior, ecology and
biomechanics of griffon vultures

We illustrate the application of the ACC and GPS data for
investigating two research questions that link behavior, ecology and
biomechanics. First, we examine how characteristics of vulture
movements (flight mode and daily travel distance) vary across the
year in relation to seasonal changes and the breeding cycle. Second,
we examine whether vultures undertaking exceptional long-range
forays (LRFs) differ from vultures during routine foraging
excursions in their core home range in daily travel distance, energy
expenditure and feeding rate.

Variation in vulture flight characteristics across the year
Vultures rely heavily on soaring flight using rising air thermals
(Ruxton and Houston, 2004), which are stronger and more frequent
in Israel in the summer compared with the winter (Goldreich, 2003).
We thus hypothesized that vultures fly longer distances and use less
active flapping flights during the summer. In Israel, griffon vultures
lay eggs between December and February, incubate their single egg
for approximately 55days during January–April, rear a nestling for
~110days until mid-summer, and the post-fledging dependence
period lasts ~75days until early fall (Mendelssohn and Leshem,
1983; Shirihai, 1996). During the post-fledging period, adults feed
their young mostly or only in the nest (Mundy et al., 1992; Sarrazin
et al., 1994). Given the high energetic demands of young vultures,
the post-fledging period involves significant time and energy
demands on the parents. Assuming that the seasonal variation in (the
artificially supplied) resource abundance and distribution is low, we
expect the daily travel distance to be short during the incubation
period and to increase during the nestling rearing period, with yet
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further increases during the post-fledging dependence period to fulfil
the higher feeding demands. In the non-breeding season, we expect
vultures to travel longer distances, to explore other colonies and
foraging areas.

To test these predictions, we used the GPS data to estimate the
variation in mean daily travel distance across the year, and the ACC
data to distinguish active (flapping) flights from passive (soaring-
gliding) flights and thereby to estimate how the proportion of the total
daily flight time devoted to active flight varies throughout the year.
We found a clear seasonal dichotomy of significantly shorter flights
during the winter and longer ones during the summer (Fig.4A,C). In
January, for example, the mean travel distance was ~35kmday–1,
with low intraspecific variability. By contrast, in the summer
(July–September) the daily travel distance was significantly higher
at ~70kmday–1, with some individuals reaching an average of
80–100kmday–1 for an entire month. During spring and fall
(March–June, October–November), the travel distance of the
vultures was not statistically different than the mean.

A clear pattern was found also for the proportion of flight time
invested as active flight (Fig.4B,D). During summer time, the
proportion of active flight was significantly lower than during
winter and showed a low variability among individuals. In the
winter, the overall proportion was higher and so were the
differences among individuals, although vultures spent fewer hours
a day flying in this season. Active flight is energetically
considerably more demanding than passive flight (Ruxton and
Houston, 2004), and typical ODBA values in our dataset are in the
order of 6.1 and 1.6ms–2, respectively.

The observed patterns match the predictions arising from the
hypothesis that environmental conditions in general, and thermal
availability in particular, limit the flight activity of vultures. During
winter, the days are shorter and colder and the thermals are weaker
and less frequent. These conditions force vultures to stay more days
in their roost, fly fewer hours a day and work harder by actively
flapping to get airborne. By contrast, in the summer, vultures enjoy

favorable thermals conditions, with long hot days ideal for soaring
flights. Therefore, as expected, during this season vultures spent
more hours a day flying, flew longer distances, almost without
performing any active flight.

The breeding cycle of the vultures might also account for
variation in the daily travel distance across the year, keeping in
mind that effects attributed to breeding cycle might also reflect
independent effects of seasonality in environmental conditions
and vice versa. As expected from the breeding cycle, during the
incubation period, flight distances are significantly shorter than
the annual average. In the subsequent nestling rearing period, the
daily flight distance increases to match the annual average. Later,
daily travel distances are significantly longer in the post-fledging
dependence period and the weeks following this period when the
vultures are not breeding, hence supporting our predictions. After
October, flight distances gradually decrease (Fig.4A,C). The
decrease during December, towards the onset of the next
breeding season, follows our prediction. Yet, the earlier decrease
during October and November departs from our prediction of
long travels during the midst of the non-breeding period,
presumably owing to the rapidly declining thermal conditions at
this time of the year, and especially during November. This, and
the finding that the proportion of active flight is significantly
higher than the annual average during the incubation period
(Fig.4B,D), presumably reflects the effects of thermal
availability rather than the effects of factors associated with this
specific breeding stage. These findings, and the significantly low
proportion of active flight during the post-fledging dependence
period, suggest that the breeding cycle of griffon vultures in this
region might be selected to coincide with activities that entail
low flight demands (such as incubation) when thermal conditions
are unfavorable, and activities that entail high flight demands
(such as the training flights of fledglings) occur when thermal
conditions are most favorable. This hypothesis, although
speculative, merits further investigation.
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Fig.4. The changes in mean and standardized daily travel distances (A,C) and in mean and standardized proportions of active (flapping) flight of griffon
vultures (B,D) across the year. Both parameters were averaged using a running window of 30days, and the analysis was restricted to individuals tracked
over 90days (N32). For vultures tracked for more than a year (N11), overlapping dates of successive years were averaged. Thin gray lines in panels A
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Flight, feeding and energetic costs during exceptional long-range
forays

Vultures are highly mobile birds capable of crossing tens and even
hundreds of kilometers on a daily basis. Nevertheless, most
individuals tend to forage within a limited area and roost in a few
locations. On six different occasions, we observed rare long-range
forays (LRFs), where vultures left their core home range for a new,
geographically remote area (Fig.5). These forays represent a rare
phenomenon of ~2.5% of our data set (Fig.5). They are
characterized by a distinct pattern of a commuting phase (where the
bird performed a long directional flight) to the destination area,
followed by a relatively short foraging phase (performing more
tortuous flights and roosting in the same area) and then commuting
back to the home range. Four different birds left Israel for Saudi
Arabia: in two of these cases the birds commuted almost directly
south–southeast for 7–9days, until reaching the border between
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Saudi Arabia and Yemen, ~1600km from their usual activity. They
foraged around for 11 and 64days, respectively, before returning
home in a journey lasting 12–13days. The third bird commuted for
10days, flying around 600km towards the southeast and foraged
for 68days. In the fourth case, the direction was more easterly, the
range was shorter (400km) and the commuting phase was 2–6days
in length, with a stay of 30days. The fifth bird left for Egypt, circled
the Sinai Peninsula for approximately one week on two separate
occasions; in this case, no foraging phase was performed. An
additional tagged bird was trapped in Saudi Arabia in December
2010 and we have not yet obtained the GPS–ACC data (see
http://arabnews.com/saudiarabia/article230917.ece).

To investigate what could drive vultures to perform LRFs, we
explored the mean daily travel distance, the energetic costs (total
daily ODBA, summed for 13 activity hours for each tag) and food
intake rate (frequency of eating events). Note that ODBA is an
indirect and not an ideal proxy for energy expenditure (Halsey et
al., 2011), and the use of eating frequency (eventsday–1) to estimate
food intake rate assumes low variation in the quantity and energetic
value of the consumed food among feeding events. To control for
both intraspecific variability and possible seasonal effects on
vulture behavior, we use a paired design where each commuting
phase is compared with: first, the regular foraging phase over the
same time interval (e.g. 6days) of the same individual 2weeks after
it returned to its home range, and second, the foraging phase of
another randomly selected individual during the same period of the
commuting flight. We also plotted the behavior during the foraging
phase of the LRF individuals far from their home range, but the
small sample size does not permit a proper statistical comparison
with the relevant controls mentioned above.

Vultures performing LRFs achieved much longer daily travel
distances than the mean during the commuting phase: four times
longer than during normal foraging of the same bird (P<0.01,
N10; paired Wilcoxon test) and three times longer than other birds
at the same period of time (P<0.01, N10; Fig.6A). Daily eating
frequency was on average two- or three-fold lower than that of the
controls (P<0.01 and P0.03, respectively, N10; Fig.6B). The
total daily ODBA was significantly higher in the commuting phase
compared with that of the two controls (P0.039 and P<0.01,
respectively, N10; Fig.6C). All reported P-values are after
Bonferroni correction for multiple comparisons. All the
comparisons with the foraging flights of LRF individuals were not
significant, although this lack of significance might be attributable
to the small sample size.

Although the very small sample size (N4) of LRF events that
include a foraging phase precludes a proper statistical comparison,
inspection of the data reveal that foraging phases embedded in
LRFs resemble commuting phases more than foraging phases not
embedded in LRFs. Daily travel distances during the LRF foraging
phase were as long as during the commuting phase and much longer
compared with the controls. Eating frequency was higher than
during the commuting phase, but ODBA values were similar.

These surprising results suggest that vultures undertaking LRFs
experience notable expenditures of energy without concomitant
gains in resource intake, compared with individuals not undertaking
such flights: LRF vultures fly more hours, cover much longer
distances each day and hence experience elevated levels of energy
expenditure during these forays. This high energy cost is not
compensated by more frequent feeding; on the contrary, LRF
vultures, during both the commuting and foraging phases, feed less
frequently than vultures foraging normally within the home range.
This implies that LRF vultures are unlikely to maintain their energy

Fig.5. Exceptional long-range forays of individual griffon vultures trapped
and tagged in the Judean and Negev Deserts of Israel. The histogram
shows the frequency of the maximum displacement of a tracked bird from
the center of its home range in non-overlapping intervals of 14days. The
six events defined as long-range forays (indicated by black arrows) are
very rare (~2.5% of the data set; note the log scale of the histogram). In
three events, one in Sinai and two in northern Saudi Arabia, the vultures
reached distances of 400 to 600km from the home range center. On two
other occasions, the vultures reached the border between Saudi Arabia
and Yemen, over 1700km from their home range center. The vast majority
of the 43 tagged birds did not reach more than 200km from their home
range center. The population home range (black area mapped out in Israel
and Jordan) is calculated from the entire dataset as the 95% kernel. HR,
home range; LRF, long-range foray.
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balance and are likely to fast for extended periods (Prinzinger et
al., 2002). The effects of these extremely deprived conditions can
be further appreciated given that one LRF event lasted more than
2months. Moreover, reduction in energy intake rate might be even
more severe if LRF birds have lower social ranking far from the
core of their home range. In this case, the accessibility of LRF
individuals to carcasses is likely to be lower than local individuals,
leading to even smaller energy gains per feeding event occurring
at a greatly reduced frequency. Overall, our results strongly suggest
that LRF events cannot be explained by optimal foraging
considerations, and LFR behavior appears to be energetically very
costly. We propose that either social aspects (e.g. a search for a
mate) or long-term advantages accruing from knowing resource
distributions at locations well beyond current home ranges might
account for this extreme and fascinating phenomenon.

Concluding remarks
Our analyses demonstrate the utility of using simultaneous GPS and
ACC data along the movement pathways of free-ranging animals
in exploring questions at the interface of behavior, ecology and
biomechanics. The two data sources are complementary, with ACC
data providing insight into behavior and energy expenditure,
whereas GPS data enable associating the observed pathway with
environmental drivers of the movement of an animal. Combining
GPS and ACC data obtained from free-ranging vultures enabled us
to suggest that their annual breeding schedule might be selected
primarily in response to seasonal conditions favoring rising-air
columns, and that rare LRF events are performed despite heavy
energetic costs and low rates of food intake. Indeed, ACC-based
tools cannot help address all questions at the interface of ecology,
behavior and biomechanics, cannot replace all alternative methods
of estimating energy expenditure and flight performance and still
await significant technological and analytical developments to
allow in-depth investigation of the basic biomechanics and
energetics of the movements of animals in the wild. However, it
should be remembered that such analyses have always been very
challenging in free-ranging animals, and especially those that move
over long periods and large spatial scales. Byrnes and colleagues
(Byrnes et al., 2011), for example, effectively illustrated the power
of ACC data recorded at 100Hz not only to identify climbing and
gliding behaviors of free-ranging Malayan colugos, but also to
quantify the climbing heights. However, such an application is
naturally limited to relatively short times and small spatial scales,
depends on physical retrieval of the data-loggers and requires
complementary measurements of the horizontal component of
movements. Watanabe and associates (Watanabe et al., 2011) used

GPS–ACC loggers to classify the flight and diving behaviors of
shags and to quantify their movement tracks, wing-beat frequency
and the duration and groundspeed of flights. An additional propeller
was used to quantify flight airspeed as well, enabling estimation of
flight power curves and comparison of flight and diving
performance. Altogether, the GPS–ACC family of tools can help
integrate biomechanics, ecology and behavior of free-ranging
animals. These tools can provide very rich datasets and symbolize
the start of a data-rich era in ecological, behavioral and
biomechanical research (Nathan et al., 2008). Each data source can
be used to address a particular set of questions, but applied together
– as we plan to do in future studies – they will bring us closer to a
full integrative analysis of movement in the framework of the
unifying formulation depicted in Fig.1.
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Table S1. Software summary 

Software Primary analysis functions used Software version 
R  1.12.1, 64-bit 
MASS (R package) lda (linear discriminant analysis) 7.3-9 
e1071 (R package) tune.svm, tune.rpart, tune.randomForest, 

tune.nnet (cross-validated parameter tuning), 
svm (support vector machines) 

1.5-24 

rpart (R package) rpart (classification and regression trees) 3.1-48 
randomForest (R package) randomForest (random forests) 4.6-2 
caret (R package) pcaNNet (ANN with principal component 

analysis, uses nnet package to build ANN) 
4.73 
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